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Abstract 
 

A systematic study of microwave discharges at 2.45 GHz has been performed 

through the pressure range of sustainable electric discharges in pure oxygen flows of 2 to 

10 Torr.  A corresponding study of 13.56 MHz has also been performed at pressures of 2, 

4, and 7 Torr.  Optical emissions from 1
2 (  )O a ∆ , 1

2 (  )O b Σ , and O-atoms have been 

measured from the center of a µ-wave discharge.  Discharge residence times from 0.1 to 5 

ms have been reported, establishing that gas temperatures arrive at stationary values within 

the first 0.3 ms upon entering the discharge region.  The 1
2 (  )O b Σ  emissions, with a 

spectral resolution of 0.01 nm, have been used to measure the temperature of the gas, 

which typically reaches a steady-state of 1,200 K.  A theoretical description of the gas 

heating is fit to measured temperatures, which determines that the fraction of discharge 

energy coupled into gas heating is 17 ± 2%.  The yield of 1
2 (  )O a ∆  comes to steady-state 

at all pressures within 1 ms of entering the discharge region.  The interpretation of the 

measured 1
2 (  )O a ∆  yield, using a streamlined, nearly analytic model, cast new light on the 

kinetics within the electric discharge.  The pseudo-first order quenching rate of 

1
2 (  )O a ∆ ranges from 6,000 s-1 for µ-wave discharges to 600 s-1 for radio frequency (RF) 

discharges, independent of gas pressure and flow rate.  The slower decay rate for the RF 

discharge corresponds with a considerably lower ionization rate.  The observations are 

consistent with a second order reaction channel that is dependent on both the electron and 

molecular oxygen ground state concentrations.  Destruction of the 1
2 (  )O a ∆  state by direct 
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impact with electrons or atomic oxygen does not adequately describe the observed behavior 

of 1
2 (  )O a ∆ .  The role of vibrationally excited ground state oxygen is explored and 

provides a plausible destruction mechanism. 
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KINETICS OF THE ELECTRICAL DISCHARGE PUMPED  

OXYGEN-IODINE LASER 

 

I Introduction 

The airborne laser (ABL) is a modified Boeing 747 designed to serve as a missile 

defense system.  The weapon system carried on the ABL is a chemical oxygen-iodine 

laser (COIL).1  COIL is a megawatt-class laser that employs the interaction of basic 

hydrogen peroxide and chlorine gas to reactively generate the first excited state of 

molecular oxygen, 1
2 (  )O a ∆ .1,2  The 1

2 (  )O a ∆ state is then used to collisionally excite 

the 2
1 2( )I P  excited state of atomic iodine.  It is the population inversion between the 

2
1 2( )I P  upper energy state and 2

3 2( )I P  ground state that provides the gain in a COIL 

device.2  Using a chemical reaction to generate the 1
2 (  )O a ∆ state of oxygen introduces a 

limit to the magazine depth of the weapon system and possesses a large logistical tail and 

significant safety issues associated with the exotic chemistry.  In order to alleviate the 

shortcomings of the COIL system, an electric discharge may be used to populate the 

1
2 (  )O a ∆ state.   

An electrically driven oxygen-iodine laser (EOIL) has many advantages.  First, it 

eliminates the logistic tail associated with the COIL chemistry. Second, it has an 
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extended magazine depth.  Next, it ffers closed-cycle operation.  Finally, it maintains the 

thermal management and beam quality traits of the COIL.   

The yield of 1
2 (  )O a ∆ produced by a microwave discharge was first reported in 

1978 by Bernard and Pchelkin.2  They obtained yields (the fraction of gas flow in the 

excited state) of 11%.2   The 1
2 (  )O a ∆ yield, aY , is defined as: 

( )
[ ]

1
2

2 0

a

O a
Y

O

 ∆ =         (1.1) 

where 1
2 (  )O a ∆   is the concentration of 1

2 (  )O a ∆  in the gas flow, and [ ]2 0O  is the 

concentration of ground state molecular oxygen entering the discharge region.  In a laser 

medium, there is competition between absorption and stimulated emission of photons.  

The excited state must reach a yield (percent of population) large enough to produce 

more stimulated emissions of photons than those absorbed.  This yield is defined as the 

threshold yield.  The threshold yield required for lasing in an oxygen-iodine laser is 17% 

at room temperature, or 293 K.  Therefore, using an electric discharge as a source of 

1
2 (  )O a ∆ for an oxygen-iodine laser will require the yield of the 1

2 (  )O a ∆ within the 

discharge to increase in order to surpass the threshold yield of the laser.   

Recent research into an EOIL device has resulted in output laser powers up to 

102 W.4  In 2004, the University of Illinois at Urbana-Champaign (UIUC) demonstrated 

the first operation of an EOIL device.5   In 2005, the maximum 1
2 (  )O a ∆ yield of 17% 

was reported without the inclusion of NO2 in the gas flow.3   The maximum laser power 

of this early laser system was 520 mW with a 400 W radio frequency (RF) discharge.  In 

2008, two parallel 1,000 W discharges were used, and a laser power of 12 W was 
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measured.4  In 2010, UIUC presented output powers of 102 W for an EOIL device, using 

a discharge configuration with six 3/4-inch quartz tubes.6  For an EOIL device to be 

useful as a laser weapon, the output laser power must be scaled to kilowatts. 

The maximum laser power of an EOIL device is constrained by the amount of 

1
2 (  )O a ∆ within the gas flow over the threshold yield.  In order to scale an EOIL device 

to higher powers, either the yield must be increased, or the number density of the gas 

above threshold must be increased.  The number density above threshold yield may be 

improved by increasing the total yield or the total gas pressure, while maintaining the 

same yield.  The overall yield of the discharge is determined by the nature of the plasma 

and, therefore, is difficult to change.  Increasing the pressure of the oxygen flowing 

through an electric discharge, while maintaining 1
2 (  )O a ∆  yields above the laser 

threshold of 17%, has proved problematic.  The pressure dependence of the yield 

suggests that a second-order reaction is destroying the 1
2 (  )O a ∆  excited state.  Previous 

studies in the literature have focused primarily on increasing production of 1
2 (  )O a ∆  and 

not on completely understanding the destruction of 1
2 (  )O a ∆  in the discharge.3-14   

In order to gain a better understanding of what is limiting the 1
2 (  )O a ∆  yield in 

the electric discharge, a systematic study is performed of a glow discharge sustained 

within flowing pure oxygen gas.  The chemical kinetics of an EOIL system are studied in 

order to investigate the dominant mechanism responsible for limiting the yield of 

1
2 (  )O a ∆  as pressure is increased. Studying chemical kinetics within an electric 

discharge is complicated because of the need to employ diagnostics that do not perturb 

the plasma.  Typical studies used the optical emissions from excited states within the 
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discharge to monitor the excited species populations.3, 8,15,16  Using optical diagnostics to 

examine the system is complicated by the variations in gas density due to changes in the 

gas temperature, as well as contamination of the collected data from emissions of atomic 

species within the measured frequency range.   

In this research, there has been an in-depth investigation of the changes in gas 

temperature as gas flow rates and gas pressures change, using the emissions of the 

1
2 (  )O b Σ  state.  The 1

2 (  )O b Σ  state is the second excited state of molecular oxygen, and 

the relative intensities of the peaks in the rotational emission spectrum are governed by 

Boltzmann statistics, allowing for the gas temperature to be extracted.  Gas temperatures 

are reported in a number of studies with errors typically being 10% or higher.3, 7, 15, 17, 18  

Emission intensities are directly related to the number density of emitters, which is then 

directly related to the gas temperature by the ideal gas law.  Uncertainty in the 

temperature translates directly into uncertainties in the determination of the species’ 

concentrations.  Using a high-resolution spectrometer and developing a theoretical 

description of the heat transfer within the gas flow, a high-precision gas temperature 

measurement was pursued.   

Gas temperature also plays an important role in laser weapon performance.  The 

intent of coupling energy into the gas using the discharge is to populate the 1
2 (  )O a ∆  

state.  If this energy is instead coupled into gas heating, it is wasted and must be removed 

from the gas flow.  Also, heavy-heavy particle interactions are typically directly 

proportional to the temperature of the gas.  One such interaction is the quenching of the 

1
2 (  )O a ∆  state by ground state oxygen.  The relationship between the excited state of 
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oxygen and excited state of iodine, which is responsible for lasing in oxygen-iodine laser 

devices, is inversely affected by temperature.  This will be discussed further in Section 

2.1.  It is important to have a precise and complete understanding of the gas temperatures 

within the electric discharge in order to understand the performance of an EOIL device.   

After temperature-driven changes in concentration are removed from the data, the 

measured 1
2 (  )O a ∆  emissions may still be affected by optical emissions from other 

excited states created by the discharge.  Within the electric discharge, other excited 

species are formed, such as O-atoms, and these may emit optically within the same 

spectral region as the molecular species, 1
2 (  )O a ∆ .  When observing the 1

2 (  )O a ∆  

emissions, the spectral radiation from four atomic species is also gathered.  The atomic 

species emit at 1,257 nm, 1,266 nm, 1,280 nm, and 1,299 nm and are in the same spectral 

region as the 1
2 (  )O a ∆  excited state, which radiates from 1,250 nm to 1,290 nm.  By 

identifying and removing the optical contributions of the O-atom states from the 

measured intensities, the 1
2 (  )O a ∆  concentrations may be studied directly within the 

discharge.  After taking care to report concentrations of emitting species accurately, a 

kinetic model is included in the analysis to understand the behavior of non-emitting 

species, such as electrons. 

In order to understand the kinetic reactions within the discharge, a computer 

model is required.  The electron density drives the reactions of all other species within the 

discharge; however, electrons do not have optical signatures [such as 1
2 (  )O a ∆ ] that 

would enable a measurement of their concentration.  Therefore, the electron number 

density is determined by numerically solving the Boltzmann equation and using the 
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results to solve a chemical kinetic package to describe the plasma.  There are many 

computational models accepted within the community. The models include at least 50 

reactions and reproduce measured results.7, 16  However, including such a large number of 

kinetic pathways makes the determination of key reactions difficult.  Therefore, a 

physically intuitive model is developed within this study that adequately describes the 

experimental results and gives a clear understanding of the physics involved in the 

system.   

A physically intuitive set of kinetics is included in a computer model and used to 

extract the behavior of the quenching reaction responsible for limiting the 1
2 (  )O a ∆  

concentration within electric discharges.  The model includes the electron density, O-

atom density, negative ion density, ground state oxygen density, and density of the 

1
2 (  )O a ∆  excited state of molecular oxygen.  This model is shown to accurately describe 

the discharge and gives a clear understanding of the gas phase kinetics, which is difficult 

to discern from models that include larger numbers of kinetic pathways.  The results of 

the physically intuitive computer model are used to describe the behavior of the 

quenching mechanism responsible for limiting the yield of singlet oxygen within RF and 

µ-wave electric discharges (13.56 MHz and 2.45 GHz, respectively). 

The destruction rate of 1
2 (  )O a ∆  increases by an order of magnitude between the 

RF and µ-wave electric field frequencies.  This drastic change links the destruction 

mechanism to electron concentrations.  The 1
2 (  )O a ∆  destruction rate extracted from the 

data is invariant as pressure and velocity of the gas flow through the discharge changes.  

The role played by electrons as well as atomic oxygen in the destruction of 1
2 (  )O a ∆ will 
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be explored.  Furthermore destruction of 1
2 (  )O a ∆ by collisions with vibrationally 

excited oxygen may play an important role in the plasma kinetics.   
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II Background and Theory 
 

 This chapter will present the theory and background relevant to the study of 

oxygen plasmas, starting with a general discussion of the operation of COIL devices and 

then the operation of EOIL devices with an emphasis on the advantages and technical 

challenges of an EOIL device. The optical diagnostics used to measure the change in 

relative magnitude of the excited species without perturbing the plasma are also 

discussed.  In the case of 2 ( )O a  and 2 ( )O b , the optical signatures involve molecular 

spectroscopy; its theory is well established and discussed in this chapter.  The 

actinometry technique is used to determine the O-atom concentration within the 

discharge region.  This technique and its associated spectroscopy are also discussed.  The 

temperature of the gas changes as it flows through the plasma region, so a theoretical 

description of gas heating and cooling is discussed.  To improve the understanding of the 

chemical kinetics occurring within the plasma from changes in the concentrations of 

measured excited species, a model of the chemical kinetics has been developed and is 

described in Section 4.6.  The rate package used in this model is dependent on the 

electron energy distribution within the plasma.  A preexisting Boltzmann solver, called 

BolSig+, is used to determine the rate coefficients for the model used in this study.  

Finally, the current status of research in the area of EOIL development is discussed 

within the context of power scaling and increasing the yield of 2 ( )O a  in oxygen plasmas.   
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2.1 Chemical Oxygen-Iodine Laser 
 

The COIL system was first demonstrated in 1977.19  The electrically excited state 

of oxygen, 2 ( )O a , is populated by a chemical reaction between chlorine gas and liquid 

basic hydrogen peroxide.  This is a multiphase process governed by the stoichiometry: 

 
1

2 2 2 2 22 (  ) 2COILkCl H O KOH O a H O KCl+ + → ∆ + +   (2.1) 
 

The radiative lifetime of the 2 ( )O a  state is 64 minutes.20  This excited state is also 

resistant to collisional deactivation at surfaces.21  Therefore, once it is created by the 

chemical reaction, this state will persist for long periods of time.  A population inversion 

between the 2 ( )O a  and 2 ( )O X  is easily achieved; however, the cross-section for the 

stimulated emission is small.  The COIL system uses the near resonant energy transfer 

from the electrically excited 2 ( )O a  state and atomic iodine 2
1 2( )I P  state to create a 

population inversion in the iodine.    

The 2
1 2( )I P  and 2 ( )O a  excited states are separated by only 0.03 eV, allowing a 

very efficient transfer of the energy from the 2 ( )O a  state of oxygen to the iodine lasing 

state.  However, the iodine injected into the gas flow is not atomic; it is in the molecular 

state.  The molecular iodine must be dissociated first before the atomic iodine can be 

excited.  The energetics for the dissociation of molecular iodine are also shown in Figure 

2.1 and require the sacrifice of at least two, but typically five, 2 ( )O a  molecules in gas 

flows of pure 2 ( )O a .  For the EOIL system, I2  is dissociated via many pathways, 

including collisional dissociation with the 2 ( )O b  state and O-atoms.3, 22, 23, 24   
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Figure 2.1  Energy level diagram for COIL, illustrating the resonant energy transfer from metastable reservoir 
O2(a 1∆) to the upper lasing level of atomic iodine 2

1 2( )I P . The energy levels for several key states involved in 

the dissociation of molecular iodine are also provided.24   
 
 
A schematic for a simple COIL device is shown in Figure 2.2.  As is observed in 

the schematic, the waste water and salt from the chemical reaction is removed from the 

gas flow.  The gas is cooled by supersonic expansion, while iodine is injected into the gas 

flow.  The chemicals are then exhausted from the laser cavity, taking any waste heat with 

them.   

The gain in the system is generated through the population inversion of 2
1 2( )I P  

versus the 2
3 2( )I P  state of the iodine atom, which emits at λ = 1.315 µm.  The 

population inversion is attained by energy transfer: 

 
1 2 3 * 2

2 3/ 2 2 1/ 2( ) ( ) ( ) ( )O a I P O X I P∆ + ←→ Σ +    (2.2) 
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Figure 2.2  Schematic view of chemical oxygen-iodine system, including supersonic expansion of gas (adapted 
from Carrol).3 
 
 

Assuming that this is the only important kinetic reaction occurring, the steady- 

state relationship between the excited states and their ground states is:  

 
( )
( )

( )
( )

2 1
1 2 2

32
23 2 0

( )eq g

I P O a
K T

O XI P

   ∆   =
   Σ  

     (2.3) 

where 
 
 

( ) ( ) ( ) ( ) ( ) ( ) [ ]3 3 1 1 3
2 2 2 2 2 30

1 1.52O X O X O v O a O b O P O         ∑ = ∑ + + ∆ + Σ + +           
 
           (2.4) 
And, from Perram et al.20: 

402 ( ) 0.75expeq
g

K T T
 ≈  
 

      (2.5) 

 
where Tg is given in Kelvin. 
 

The ratio of 2 2
1 2 3 2( ) ( )I P I P  is directly related to the yield of the 2 ( )O a  that 

results from the singlet oxygen generator (SOG).  Note that the equilibrium constant is 
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temperature-dependent.  By cooling the gas, the yield, aY , required to reach the threshold 

is decreased.  Note that the value of [ ]2 0O  (used in determining aY ) in a conventional 

COIL is [ ] [ ]2 2( ) ( )O X O a+ , because the other species do not obtain significant 

concentrations.  The threshold for gain (at Tg = 295 K) is achieved when aY  is 

approximately 15%.  By virtue of Keq, the threshold yield is reduced to approximately 5% 

at the point of supersonic expansion by reducing the gas temperature to 160 K.  Typical 

yields from the RotoCOIL SOG used in a COIL are 80%.26   

 
2.2 Electric Discharge Pumped Oxygen-Iodine Laser 
 

The primary difference between an EOIL and a conventional COIL system is the 

SOG.  Changing this component introduces limits to yield, temperature issues, and 

excited species that do not exist in the conventional chemical system and will require 

adjustments to the laser system.  In Figure 2.3, a schematic of a typical EOIL system is 

shown.  

In Figure 2.3, the system exhaust, laser cavity, and supersonic gas expansions are 

all very similar to those shown for the conventional COIL system.  The system’s SOG is 

an electric discharge.   

The major differences between a chemistry based SOG and a discharge-based 

SOG are:  (1) aY  is smaller, approximately 10-15%; (2) gas temperatures within the 

plasma are much higher, commonly reaching temperatures of 700 K and higher; and (3) a 

myriad of other excited species, such as O-atoms and vibrationally excited O2, are 
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formed, possibly limiting the maximum achievable 2 ( )O a  population and reacting with 

I*, which will reduce the achievable gain within the discharge.2, 3     

 

 
 
Figure 2.3  Schematic of a typical EOIL system, including a discharge-driven singlet oxygen generator, a 
supersonic flow to cool the gas before the laser cavity, iodine injection, and the laser cavity itself (adapted from 
Carrol et al.).3 
 
 
 
2.3   Calculating Electron Energy Dependent Rates  
 
  Gas discharge models require the use of rate coefficients, which are dependent on 

the electron energy distribution within the plasma, as shown below:   

1
2

1 2

0

2( / ) ( ) ( ; / )i i
ek E N f E N d

m
σ ε ε ε ε

∞
 =  
  ∫    (2.6) 

( / )ik E N  is the rate coefficient of the ith reaction; e  is the fundamental charge of an 

electron; m is the electron mass; ( ; / )f E Nε is the electron energy distribution function 
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(EEDF); ε  is the electron energy; ( )iσ ε  is the ith electron impact cross-section; E is the 

electric field strength; and N is the number density of collision partners.  In this work, N 

will be the ground state of molecular oxygen, because, under most conditions, 70% or 

more of the gas flow remains in the ground state.  In plasmas, electrons are accelerated by 

the electric field and slowed by collisions, so a key parameter of a plasma is the value of 

E/N or the reduced electric field.27   

The BolSig+ solver provides a steady-state solution of the Boltzmann equation for 

electrons in a uniform electric field, using the classic two-term expansion.27  At high 

values of E/N (where most collisions are inelastic) and f (the distribution function 

becomes anisotropic), the two-term approximation will fail.  The errors in calculated 

transport coefficients are acceptable for fluid discharge modeling in the range of most 

studies.27  The typical reaction rates for this study are shown in Table 2.1.  In this table, 

the  reaction rate for elastic collisions is 85.9 10−× cm3 s-1, which is much larger than the 

reaction rates for inelastic interactions of electrons with ground state oxygen.  Therefore 

the conditions of this study are well within the conditions where the two-term expansion 

is valid.   

In general, the EEDF, ( ) [ ]3 2 1 2( ) 2 expB e B ef k T k Tε ε π ε ε−= − , may be 

calculated from the fundamental collisional cross-section data (of the gases in which the 

plasma is being sustained) by solving the Boltzmann equation.  The average energy of the 

electrons, avgε , is the average value of ε  using the EEDF27: 

0

( )avg f dεε ε ε ε
∞

= ∫        (2.7) 
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Table 2.1  Reaction rates for this work.  Values calculated at 4 Torr, Tg = 1,185 K, and Te = 3.2 eV  
(given in units of cm3 s-1 with the exception of reaction 24 in units of cm6 s-1). 

Reaction 
Number, k 

Name Reaction Reaction Rate 
Coefficient 

Source 

1 Elastic 
Collisions [ ] [ ]2 2( ) ( )e O X O X e− −+ → +  kElas

85.9 10−= ×  28 

2 Dissociative 
Attachment 2 ( ) attchke O X O O− −+ → +  kattach(Te) 111.9 10−= ×  28 

3-9 Vibrational 
Excitation 

−− +→+ evOXOe vk )()( 22  
v = 0.02 to 0.75eV 

115.3 10−= ×  28 

10 Excitation 
0.98 eV 

−+− +→+ eaOXOe ka )()( 22  ka+(Te) 104.2 10−= ×  28 

11 Excitation 
1.63 eV 

−+− +→+ ebOXOe kb )()( 22  kb+(Te) 119.9 10−= ×  28 

12 Excitation 
4.50 eV 

−− +∑→+ + eAOXOe Ak ),()( 3
22  kA+(Te) 101.6 10−= ×  28 

13 Excitation 
6.0 eV 

−− ++→+ + ePOPOXOe Ok )()()( 33
2  kOP+(Te) 102.2 10−= ×  28 

14 Excitation 
8.4 eV 

−− ++→+ + eDOPOXOe Ok )()()( 13
2  kOD+(Te) ) 

102.3 10−= ×  28 

15 Excitation 
9.97 eV 

−− ++→+ + eSOPOXOe Ok )()()( 13
2  kOS+(Te) ) 131.7 10−= ×  28 

16 
 

Ionization 
12.06 eV 2 2( ) ionke O X O e e− + − −+ → + +  k ion(Te) ) 121.0 10−= ×  28 

17 
 

Deexcitation 
0.98 eV 2 2( ) ( )ake O a O X e−− −+ → +  ka-(Te) 105.4 10−= ×  Detailed 

Balance 
18 
 Recombination 3 3

2 ( ) ( ) ( )recke O X O P O P− ++ → +  k rec(Te) 81.6 10−= ×  20 

19 
 

Atomic 
Recombination 2 ( )wallkO O Wall O X+ + →  kwall = 2400 20 

20 Detachment 2 3( ) OdekO O a O e− −+ → +  
( )0.5-10 3.0 10 300Ode gk T= ×  

116.0 10−= ×  
20 

21 Ionic 
Recombination 2 2( ) ( )OreckO O X O O X− ++ → +  ( ) 172.0 10 300Orec gk T

−−= ×  

85.1 10−= ×  
20 

22 Quenching by 
O2(X) 2 2 2[ ( )] [ ( )] 2[ ( )]O a O X O X+ →  

200
18

2 3.0 10 gT
O xk e

−
−= ×  
182.5 10−×  

29 

23 Quenching by 
O-atoms 2 2[ ] [ ( )] [ ( )]O O a O O X+ → +  162.0 10aOk −= ×  30 

24 Three Body 
Reaction 2 2 2[ ] [ ( )] [ ( )] [ ] 2[ ( )]O O X O a O O X+ + → +  32

3 1.0 10bodyk −= ×  17 

25 Quenching by 
Ozone 3 2 3 2[ ] [ ( )] [ ] [ ( )]O O a O O X+ → +  

2840
11

3 2.0 10 Tg
aOk e

−
−= ×  

121.8 10−= ×  
29 

26 Electron 
Interaction 2[ ] [ ( )] [ ]e O a e All− −+ → +  

10( ) 10ae avgk f ε −≈ ×  

106.7 10−= ×  
Scaled 

27 Vibrationally 
Excited O2 2 2 2 2[ ( )] [ ( )] [ ( )] [ ( )]O v O a O b O X+ → +  104 10vk −≈ ×  This 

Work 

28 Pooling [ ] [ ] [ ] [ ]2 2 2 2( ) ( ) ( ) ( )O a O a O X O b+ → +  
kpool 

-17  (-560/Tg)= 9 10  e×  
188.2 10−= ×  

30 

29 Quenching of 
O- by O-atoms O M O M e− −+ → + +  koneg  108 10−= ×  31 

30 
O(1D) 

quenched 
O2(X) 

1 3 3 3( ) ( ) ( ) ( )O D O P O P O P       + → +         KO1D 128 10−= ×   18 

31 O(1D) excites 
O2(a) [ ] [ ]1 3

2 2( ) ( ) ( ) ( )O D O X O P O a   + → +     
ka1D  -12  (-67/Tg)= 1.6 10  e×  

121.5 10−= ×  
29 

32 O(1D) excites 
O2(b) [ ] [ ]1 3

2 2( ) ( ) ( ) ( )O D O X O P O a   + → +     
kb1D = -11  (-67/Tg)= 2.56 10  e×  

112.4 10−= ×  
29 
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Using this definition of average energy, the temperature of the electrons in electron-volts, 

eT , is defined as: 

  2
3e avgT ε=         (2.8) 

Kinetic rates are calculated from their integral form shown in Equation 2.6 and are 

dependent on the EEDF.  However, using the EEDF is cumbersome, so the electron 

temperature, as defined above, is used to define the system for the sake of convenience 

when discussing the plasma’s state.27 

In Table 2.1, all of the reactions used in this study are listed, and approximate 

values are given.  Reactions 1-16 are used in the BolSig+ model to determine the 

EEDF.27  Reaction 1 represents the rate of elastic collisions between the oxygen in the 

gas flow and electrons.  Even though the rate coefficient of this reaction is large, the 

energy exchange between the very light electrons and heavy oxygen molecules is very 

small.  As a result, the reaction does not play a significant role in the energy balance of 

the plasma.  The reaction rates are determined for a plasma maintained at a pressure of 4 

Torr, a flow velocity of 20 m/s, and an E-field operating at 2.45 GHz.  These particular 

plasma conditions are relevant to the experimental discussions in Chapter 4.  Reactions 

17-32 will be used throughout this document, and their approximate values are 

determined assuming a gas temperature of 1,200 K, which is typical for this study. 

For a given gas composition and field frequency, BolSig+ numerically solves the 

Boltzmann equation to determine the EEDF, referencing tabulated cross-section data.  

Using the calculated EEDF, the model then numerically integrates to determine the 
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electron energy dependent rate coefficients associated with reactions 1-16.  The BolSig+ 

solver has been cited in over 35 publications and used to determine the EEDF in a variety 

of gas mixtures, including oxygen, nitrogen, argon, and helium.27, 32-34  The cross-sections 

included in Figure 2.4 are inputs to the BolSig+ model.  The measurement of these cross-

sections was reported by Phelps, 1985.28  The typical electron temperatures of the 

discharges studied in this work are approximately 3 eV.   
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Figure 2.4  Cross-sections for the production of excited states of oxygen included in the BolSig+ 
model.  ● elastic collisions reaction 1; ○ dissociative attachment reaction 2; ■ vibrational excitation 
0.02 eV reaction 3; □ vibrational excitation 0.19 eV reactions 4 and 5; ♦ vibrational excitation 0.38 eV 
reactions 6 and 7; ◊ vibrational excitation 0.57 eV reaction 8; + vibrational excitation 0.75 eV 
reaction 9; ▼ O2(a) production reaction 10;  O2(b) production reaction 11; ▲O2(A) production 
reaction 12;  dissociation reaction 13; X dissociation producing O(1D) reaction 14;  │dissociation 
producing O(1S) reaction 15; ▬ ionization reaction 16. 
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Even though the average electron energy is 3 eV, reactions with energy thresholds 

larger than 3 eV, such as ionization, may have significant rates of production, because the 

tails of the EEDFs extend into higher energies.  Some EEDFs for different E/Ns are 

shown in Figure 2.5.  Typical E/N values for this work range from 80 to 200 Townsend 

(Td), which is defined as 1 x 10-17 V-cm.2 

The average E/N values for this study are 55.6 Td, which yields an average 

electron energy of  3.2 eV.  As seen in the 55.6 Td case, there is a significant population 

of electrons with energies above 5 eV.  Because the electron populations with high 

energies can be large, the probability of exciting high-energy oxygen states in a plasma 

can also become large. 

It is important to note that this energy distribution would be exponential if 

Boltzmann statistics prevailed. Consequentially, the reduced energy distribution would be 

linear, on a semi-log plot, Figure 2.5.  This difference in the EEDF demonstrates the need 

for using the BolSig+ model for this study.  The rate coefficients in Figures 2.6 and 2.7 

are for the reactions included in BolSig+.  The shaded areas in these figures are the 

energy ranges of interest for the two different oscillation frequencies studied in this work.  

The rate coefficients are calculated by the integration shown in Equation 2.6.  In 

producing Figures 2.6 and 2.7, the BolSig+ code was run over a range of E/N with values 

from 1 to 250 Td and 1 – 450 Td consecutively.   

Introducing an oscillating field changes the EEDF, if the frequency, ω, of the field 

is fast enough that the field direction changes before the average electron experiences a 

collision. 
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Figure 2.5  Comparison of Maxwellian distribution at Te = 3.2 eV, ─, to the electron energy 
distribution functions in oxygen with a µ-wave field with reduced electric field values of ● 10, ○ 55.6, 
and ■ 200 Td.27 
 
 

  The approach to describing oscillating systems is to introduce an effective 

electric field ( effE ) that includes the effects of the field frequency7 as shown in and 

MacDonald, 194935:   

2

2 2

c
eff

c

v
E E

vω
=

+
      (2.9) 

 
where E is the rms value of the electric field, cν  is the collision frequency, and ω is the 

radian frequency of the oscillating field.   
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Figure 2.6  The reaction rates as a function of reduced electric field for a pure oxygen discharge and 
an RF field, 13.56 MHz.27  ● attachment reaction 2; ○ vibrational excitation 0.02 eV reaction 3; ■ 
vibrational excitation 0.19 eV reactions 4 and 5; □ vibrational excitation 0.38 eV reactions 6 and 7; ♦ 
vibrational excitation 0.57 eV reaction 8; ◊ vibrational excitation 0.75 eV reaction 9; ▼ O2(a) 
production reaction 10;  O2(b) production reaction 11; ▲O2(A) production reaction 12;  
dissociation reaction 13; + dissociation producing O(1D) reaction 14; X  dissociation producing O(1S) 
reaction 15; ▬ ionization reaction 16.     
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Figure 2.7  The reaction rates as a function of reduced electric field for pure oxygen gas in a µ-wave 
frequency oscillating field; 2.45 GHz.27  ● attachment reaction 2; ○ vibrational excitation 0.02 eV 
reaction 3; ■ vibrational excitation 0.19 eV reactions 4 and 5; □ vibrational excitation 0.38 eV 
reactions 6 and 7; ♦ vibrational excitation 0.57 eV reaction 8; ◊ vibrational excitation 0.75 eV 
reaction 9; ▼ O2(a) production reaction 10;  O2(b) production reaction 11; ▲O2(A) production 
reaction 12;  dissociation reaction 13; + dissociation producing O(1D) reaction 14; X  dissociation 
producing O(1S) reaction 15; ▬ ionization reaction 16.     
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Note that when ω is sufficiently small in comparison to the collision frequency, the 

fraction in Equation 2.9 approaches 1, and hence, the effective electric field is equal to 

the rms value of the electric field.35, 36  At 7 Torr and above, the collision frequency is 

large enough that Eeff  is not sufficiently perturbed from the rms value of the electric 

field.  However, at pressures lower than 7 Torr, the effects become increasingly stronger.  

In Figure 2.7, the reaction rates are shown for a µ-wave frequency electric field operating 

at 2.45 GHz in 4 Torr of oxygen.  The different ranges of Eeff/N for the two different E-

field frequencies have a large affect upon the ionization rate and will be discussed further 

in Section 4.8.   

 

 2.4   Energetic Species Monitored within the Discharge 
 
Within an electric discharge, a number of excited species are created.  Information 

on plasma conditions can be extracted from observing the emissions from excited 

species.  The energy levels of most of the monitored species are shown in Figure 2.8.  It 

requires 5.2 eV to dissociate the oxygen molecule into two neutral atoms, 1.6 eV to excite 

the 2 ( )O b  state, and 0.98 eV to excite the metastable 2 ( )O a  state.  Figure 2.8 also shows 

that the energy of the 2 ( )O X−  state and O−  state are more energetically stable than the 

ground state of oxygen.  
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Figure 2.8  Morse potentials representing the energy levels of ground state, O2(a), O2(b), and the 
dissociation energy of the oxygen molecule. 
 
 

 2.4.1   Spectral Emissions from the O2(a) State  

The transition of the singlet oxygen a-state to the ground state of oxygen, 

( )1 3
2 , , 0 , , 0gO a v X v′ ′′∆ = → Σ = , is centered at 1,268 nm and is spin and angular 

momentum disallowed; however, the transition is magnetic dipole allowed.  The 

spectrum, measured with a 0.33 meter spectrometer, is shown in Figure 4.11, while the 

possible branches for this system are shown in Figure 2.9.37  The expected transitions are 

for ∆K = 0, ±1, ±2.  K is the quantum number related to total angular momentum, 

excluding spin, which becomes a good quantum number under Hund’s case b.37  Hund’s 

case b predicts quantum mechanical energy levels when the spin vector, S, is not strongly 

coupled to the intra-nuclear axis.  Therefore, the possible values of the total angular 

momentum quantum number, J, are from K+S to the absolute value of K-S, in integer 
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steps.  The 2 ( )O a  state has an angular momentum quantum number of two, and the spin 

is equal to zero.  The subscript, g, refers to the inversion symmetry of the eigenstate of 

the energy level. 37   
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Figure 2.9  Branches of Magnetic Dipole Branches for O2(a) emissions (adapted from Herzberg).37 

 
 
The ( )1 3 1

2 g gO a X∆ → Σ  transition has a complex and dense rotational structure, 

with nine rotational branches (∆K∆J = OP, PP, PQ, QP, QQ, QR, RR, RQ, SR). 37  The 

negative or broken circle transitions are asymmetric states and are absent from the 

emission spectra due to the zero nuclear spin.  The same will be true in the 2 ( )O b  

emissions in Figure 2.10.   

 
2.4.2   Spectral Emissions from the O2(b) State  

 
The emission spectrum for the 2 ( )O b excited state to the 2 ( )O X  ground state is 

centered at 762 nm.  The total orbital angular momentum is equal to zero for both states 

involved.  The spin of the upper state is zero, while the spin of the ground state is one.  
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The doublets that appear in the 2 ( )O b  spectra are caused by the close spacing between 

the PP and PQ branches (along the P branch side of the spectra) and the RR and RQ 

branches (on the R branch side of the spectra).37  These transitions are shown in 

Figure 2.10.  The intensity of the emission lines, ( ')bI J in the PP and PQ branches, may 

be used to derive the rotational temperature and are defined as: 

 
  )'()'( '

" JNCSJI J
Jb =        (2.10) 
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Figure 2.10  Possible branches for the O2(b) emissions to the ground state (adapted from Herzberg).37 

 
 
where 

  ( ) ( )0

'

( ') 2 ' 1 exp ( ') /
( ')

v
R

R
J

N J hcB J F J hc kT
N J kT

′= 
= + − 

 ∑
   (2.11) 
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and 
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( )N J ′  is the concentration of ( )2 , 0,O b v J′ ′= ; v indicates the vibrationally excited 

state; C is an arbitrary scale factor, including radiometric and detectivity factors; 

1
0 1.39138 vB cm−

′= = ; 6 1
0 5.486 10  vD cm− −

′= = ×  15, 38, 39; ( )F J ′  = rotational energy, 

which is equal to ( ) ( )( )2
0 01 1v vB J J D J J′ ′= =′ ′ ′ ′+ − + ; and TR = rotational temperature.  

The value of TR may be extracted from the measurement of the excited states’ emissions.  

This method is used to determine the gas temperature in Chapter 4. 

 
2.5   Heat Transport for a Gas Flow in a Cylindrical Vessel  
 

The velocity of the gas flow is controlled by gas flow controllers.  The gas flow 

controllers measure gas flow in standard cubic centimeters per minute (SCCM).  

Calculating the gas velocity from the measured SCCM is more or less a unit conversion 

from SCCM to cm/s.  Standard cubic centimeters assume that the gas is at standard 

temperature and pressure (STP), meaning that pressure is 760 Torr and the gas is at 

300 K.  A plug flow model is used, ignoring the effects of the wall on the velocity.  The 

validity of this assumption is based on the flow having a Reynolds number of less than 

500, which is discussed in greater detail in Appendix A.  So, the mapping from SCCM to 

cm/s is: 
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( )0.0432 g
g

nTnv
NA AP

= =


      (2.13)  

where gv  is the gas velocity; N is the number density of the oxygen in the gas flow 

determined by the gas pressure and temperature; A is the area of the flow tube; and n is 

the mass flow rate measured in SCCM.  The quantities on the right-hand side of 

Equation 2.13 are all measured quantities; therefore, velocity is a simple calculation.  

Flow velocities are calculated in Chapter 3.   

Using a simple heat transfer model, the fraction of the discharge power coupled to 

the gas temperature is determined.  Also, an experimental determination of the Nusselt 

number is possible.40  The Nusselt number will be discussed in greater detail in 

Chapter 4.   

As discussed in Appendix A, the energy equation for gas in a gas flow may be 

written as40: 

 

0( )g
p in T g

dT
VC fP Sh T T

dt
ρ = − −      (2.14) 

Pin is the power coupled into the gas;  f  is the fraction of the power going to gas heating; 

    πrl  S 2= is the surface area of the cylindrical tube, where the tube radius .005 r 0= m 

and the length of the plasma 025. 0  l = m;  hT is the heat transfer coefficient, which varies 

less than 15% in the temperature range of interest;  ρ is the mass density of the gas; V is 

the discharge volume; and 005pC 1.  = kJ/(kg K), which is the heat capacity of oxygen.40   

The pressure in the flow tube was measured along the length of the flow tube and 

exhibits a less than 1% change in value. Therefore, the gas pressure is assumed to remain 
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constant, and any change in the gas temperature will change the gas density, but not the 

gas pressure, as governed by the ideal gas law. Expressing the density in terms of 

pressure and temperature via the ideal gas law, the equation may now be written as: 

 

0( )g
p T g in

B g

dTPmVC Sh T T fP
k T dt

= − − +      (2.15) 

 
After introducing P0/P as a unitless scaling term, the pressure-dependent data is 

collapsed to a single functional form: 

 

0'
0 0

1 ( )g B inB T
g

g r p p

dT k fPk Sh T T
T dt P mVC P mVC

= − − +      (2.16) 

 
where kB is the Boltzmann constant; P is pressure; m is the mass of oxygen; and 
 

' 0
r

Pt t
P

 =  
 

         (2.17) 

 
is the pressure normalized time of the system. 

The solution to Equation 2.16 is:  
 

( )
'

'

 
' 0

 
0

 ( )
 

r

r

t

g r t

T eT t
T e

γ

γ

γ
β α

=
+

       (2.18) 

 
where  
 

0

B T

p

k Sh

P mVC
α = ,  βαγ += 0T , and  

0

B in

p

k fP
P mVC

β =     (2.19)  

 
If it is assumed that the temperature comes to a steady-state, then a steady-state gas 

temperature may be introduced to Equation 2.18.  So, as  '
rt → ∞  , '( )g r ssT t T→ , where 

Tss is the steady-state temperature of the gas.  In this limit, the β term in  
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Equation 2.18 may be neglected, and Tg may be written as: 

 
'

'

 
0

 
0

  
 

r

r

t

ss t

T eT
T e

γ

γ

γ γ
αα

= =         (2.20) 

 
Equation 2.16 may now be rewritten as: 
 

0'

1 ( )g
g

g r

dT
T T

T dt
α β= − − +        (2.21) 

 
And after multiplying both sides of the equation by Tg and including the steady-state 

temperature defined in Equation 2.20:  

   '

1 ( )g
ss g

g r

dT
T T

T dt
α= −         (2.22) 

 
Using the new form of the equation, the solution may now be written as: 
 

( )

'
ss

'
ss

T  
' 0

T  
0 0

 ( )
 

r

r

t
ss

g r t
ss

T T eT t
T T T e

α

α
=

− +
       (2.23)  

 
This functional form of the time-dependent temperature applies to the temperature profile 

within the electric discharge discussed in this work.  The Nusselt, Nu, number describes 

the relationship between convective heat transfer and conductive heat transfer.  Nusselt 

values greater than 100 are indicative of turbulent flows.  Therefore a value significantly 

less than 100 is suggestive of a flow operating in the laminar regime.  For a cylindrical 

flow tube 24: 

T

T

h D
Nu

k
=          (2.24) 

where D is the diameter of the flow tube, kT is the thermal conductivity of the fluid, and 

hT is the convective heat transfer coefficient.  For all cylindrical flow tubes, the Nusselt 
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number should equal approximately 4.364.40  This analysis will play an important role in 

determining the time-dependent temperature of the gas flow. 
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Figure 2.11  Temperature versus residence time. 
 
 

In Figure 2.11, the functional form of the gas temperature (using Equation 2.18) is 

shown for oxygen gas flowing in a cylindrical tube and being heated via a capacitively 

coupled 100 W discharge.  The x-axis in Figure 2.11 is the amount of time required for 

the gas to travel through the discharge region.  This amount of time is nominally the 

length of the discharge divided by the velocity of the gas.  Residence time will be 

discussed in greater detail in Section 4.2.  The fraction of power coupled into gas heating 

is arbitrarily chosen to be 20%.  As calculated in Appendix B, a significant amount of 

power is coupled into the formation of excited states within the gas flow; therefore, all 
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the power does not need to be coupled into gas heating or lost via radiation.  There are 

two important parameters to be extracted from this functional form.  First is the initial 

slope of the curve, which is determined primarily by the strength of the heating term.  

Second is the steady-state temperature of the gas, which is the balance between the 

heating term and heat-loss term.   

 
2.6   Determination of O-atom Concentrations Using Actinometry  
 

The actinometry technique uses the emissions from the 3 3(3 3 )O s S p P→  

transition at 844 nm and the (4 4 )Ar s p→  transition at 750 nm to determine the O-atom 

number density within an oxygen plasma.41  Energy level diagrams for these two states 

are shown in Figure 2.12.  

 

      
 
Figure 2.12  Schematic drawing of the energy levels involved in determining the concentration of the 
ground state oxygen atoms in the actinometery method. 
 
 

It is assumed that the two main pathways of production of the 3( )O P  state are 

direct excitation by electrons and dissociative excitation, as shown below38: 
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where O
ek is the rate coefficient for excitation of O-atoms from the ground state to the 

3( )O P  state, and dek  is the rate coefficient for dissociation of molecular oxygen to two 

O-atoms [one excited to the 3( )O P  state].   

It is assumed that the mechanism for excitation of 1(2 )Ar p  is direct electron 

impact: 

−− +→+ epArpAre
Ar
ek )2 (         )1 ( 1       (2.26) 

where Ar
ek  is the rate of excitation from 1(1 2 )Ar p p→ .  As shown in Figure 2.13, the 

excitation cross-sections for the 1(2 )Ar p and 3( )O P states are similar, which allows this 

method to determine the O-atom population from the argon emissions.  The primary loss 

mechanism for these two excited states is radiative38: 

 
3 3(3  )             (3  )  (844.6 )
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A

O p P O s S hv nm
Ar p Ar p hv nm
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Σ
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   (2.27) 

 

where OAΣ  and ArAΣ  are the sum of all the radiative loss rates of the two excited states.   
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Figure 2.13  Cross-sections for electronic excitation of the O(3P) and Ar(2p1) states and reduced 
electron energy distribution at 30 and 100 Td.38 Image taken from Pagnon et al. 
 
 
Collisional relaxation with the ground state will slightly influence the actinometry results, 

so these reactions are accounted for in this analysis38: 
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where O
Qk is the rate coefficient for collisional relaxation of the 3( )O P  state by ground 

state oxygen, and Ar
Qk is the rate coefficient for collisional relaxation of the 1(2 )Ar p  state 
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by collision with ground state oxygen. With all of these reactions considered, the 

intensity of the argon emissions and oxygen atom emissions are38:   
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where IAr is the intensity of the argon emissions, IO is the intensity of the O-atoms, AAr is 

the Einstein A coefficient for argon, and AO is the Einstein A coefficient for O-atoms. 

Therefore, the ratio of the measured emissions resulting from these two excited state 

takes the form of: 
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This relationship may also be written as: 
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From Equation 2.31, it may be seen that the ratio of the measured intensity of the 

844 nm line and the 750 nm line is a constant value, O
ArC , multiplied by the ratio of  
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[ ] [ ]2 ( )O O X .  The constant, as determined by Pagnon,38 is 2.1 ± 0.15 x 10-3 with a 7% 

uncertainty for a given ratio of [ ] [ ]2 ( )O O X .38  The Pagnon results are measured over a 

pressure range of 0.36 to 2 Torr and a discharge current of 5 to 80 mA.38  Note that O
ArC  is 

a function of the ratio of argon and molecular oxygen, as well as the Eeff/N of the 

discharge.  The ratio of 2Ar O  in the Pagnon study is 10-2.38  In this study, the ratio of 

argon to oxygen is 0.1.  Therefore, the value of O
ArC  is scaled by an order of magnitude to 

2.1 x 10-2, as dictated by the increase of the argon concentration.  The determined values 

of O
ArC have an approximate 20% error associated with them.  The actinometry method is 

well understood and widely applied for the detection of O-atoms in the presence of 

electrons.42-54   

 
2.7   Operational EOIL System  

Bernard and Pchelkin explored the production of 2 ( )O a  within an electric 

discharge in 1978.2  Using a microwave discharge at 70 W and 450 mTorr, they reported 

a maximum 2 ( )O a  yield of 11%.  This value is short of the 15% threshold for gain at 

room temperature.  Also, work released by Schmiedberger, Takahashi, and Fuji in 200113 

reports a maximum 2 ( )O a  yield of 30% over the E-field frequency range of 25 to 100 

MHz.  With a 30% yield, there should be a significant amount of extractable power; 

however, the reported maximum laser power is approximately 2 µ-watts, which is similar 

to power levels expected from florescence.  The calibrated high-purity germanium 

(HPGe) detector, which they use to determine the aY , does not spectrally resolve the 
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emissions.  An unresolved spectrum is susceptible to corruption if there is another 

emitting species in the detected frequency range.  Including emission intensities from 

other excited species, such as O-atoms, may explain the discrepancy between the reported 

2 ( )O a  yield and laser power.   

 
2.7.1 Work at the University of Illinois at Urbana-Champaign 

In 2004, UIUC demonstrated the first operation of an EOIL device. 5   A 

schematic of the system is shown in Figure 2.14.  The gas flow is made up of oxygen; 

helium, which is the carrier gas that comprises 83.55% of the gas flow; and trace amounts 

of NO in the flow (0.78%).  NO and NO2 are parasitic to O-atoms via a catalytic reaction.  

Therefore, including NO in the discharge decreases the amount of O-atoms that result 

from the discharge, while also serving as an electron donor to allow the discharge to be 

self-sustaining at an E/N of 10 Td.  This E/N is ideal for the production of 2 ( )O a , as 

stated by Stafford and Kushner.7  Introducing NO2 in the gas flow downstream of the 

discharge serves two purposes according to the authors.  Primarily NO2 will further 

reduce the amount of O-atoms in the gas flow, by the catalytic reaction.  Also the 

addition of a room temperature gas downstream of the discharge will cool the hot effluent 

from the discharge region.  O-atoms quench the excited state of iodine responsible for 

lasing in the system, so reducing O-atom concentrations increases the steady-state value 

of the excited iodine state.7  It is reported that, even though some O-atoms are helpful in 

dissociating I2, too many will deactivate I*, which has a detrimental effect on laser 

performance.3  In 2005, a maximum 2 ( )O a  yield of 17% was reported without the 

inclusion of NO2 into the gas flow.3   The maximum laser power of the system was 520 
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mW with an RF discharge coupling 400 W into the discharge.  The operating conditions 

of the laser were a total pressure of 12.9 Torr with oxygen comprising 15.67% of the gas 

flow or a partial pressure of approximately 2 Torr.  

 
 

 
 
Figure 2.14  Schematic design of an electric discharge pumped oxygen-iodine laser demonstrated by 
the University of Illinois at Urbana-Champaign. Partial pressure of oxygen was 2 Torr in the flow 
and 520 mW laser power coupled out of the system. 3 
 
 
 In January 2008, UIUC applied a 100 W RF discharge to predissociate the I2 

before it was injected into the gas flow.55  Operating at a total pressure of 300 Torr, a 

mixture of He:O2:NO at 50:10:0.05 was passed through a 700 W RF discharge.  The pre-

dissociation of the I2 resulted in a gain of 0.067% cm-1 and a maximum laser power of 6 

W.  This report was followed closely by a report in which the primary discharge was 

changed from a single discharge in a gas flow tube with a radius of 4.9 cm to two flow 

tubes with radii of 1.6 cm.  Each flow tube had power capacitively coupled into it using 

two 1,000 W RF discharges.  Once again, the I2 was pre-dissociated, using a 100 W RF 

discharge; the reported gain was 0.17% cm-1 with a maximum power of 12 W.4   
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2.7.2 Work by Alan Hill at Kirtland AFB 

Alan Hill proposed a method for producing 2 ( )O a  with higher energy 

efficiency.55  The major problems with electrically driven SOGs are that self-sustained 

discharges, operate at reduced electric fields that do not produce 2 ( )O a  efficiently, 20 – 

40 Td.  Therefore a large portion of the energy coupled into the discharge goes to the 

creation of excited species which are not 2 ( )O a and instead result in heating the gas 

flow.  Heating the gas is detrimental to an EOIL system in two ways.  First, any power 

that is coupled into the temperature of the gas is not available for the production of 

2 ( )O a .  Second, the pooling reaction, 

[ ] [ ] [ ] [ ]2 2 2 2( ) ( ) ( ) ( )O a O a O X O b+ → + ,     (2.33) 

increases exponentially with gas temperature.7  So, not only is the energy used to heat the 

gas-wasted power, but it also decreases the amount of 2 ( )O a  created in these systems.  It 

is possible for an outside source of electrons to sustain the discharge.  Therefore, the E-

field could be held at low levels that are ideal for the production of 2 ( )O a , and this 

would also keep the gas temperature low.  Current results, using pre-ionization by UV 

radiation, with voltage pulses of ~150 Td, ~10-30 ns pulses at 50,000 pulses s-1, and a DC 

E/N of ~10 Td promise:  (1) singlet oxygen yields of 30%; (2) an electric excitation 

efficiency of 40%; (3) specific energy loading of 150 kJ/m O2; and (4)  a temperature 

increase of less than 125 K.  Lasing from this system has not been reported yet.57   
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2.7.3 Work at The Ohio State University 

Work at The Ohio State University (OSU) is based on using the pulser-sustainer 

method of maintaining a discharge first proposed by Hill.58, 56  Typical glow discharges 

have two drawbacks, which are addressed by using pulser-sustainer systems.  One is that 

the supersonic nozzles employed in EOIL systems require significant gas pressures 

upstream of the supersonic nozzle.  Typical electric discharges in oxygen are not stable at 

these pressures.  Pulser-sustainer methods establish stable discharges at high pressures.  

Secondly, the optimal E/N for the production of the 2 ( )O a  state is approximately 10 Td, 

which is significantly less than the E/N in which a typical oxygen discharge is 

sustainable.7  By combining high-voltage pulses with a constant field of relatively low 

voltage, a pulser-sustainer is able to maintain an average E/N around 10 Td.7  The 

frequency and power of the sustainer pulse is tailored to keep the discharge stable.  In 

January 2007, OSU demonstrated a peak laser power of 0.28 W, using a pulser-sustainer 

SOG.57  The gas flow was 15% O2/85% He at a discharge pressure of 60 Torr and a 

discharge power of 1.55 kW.  A maximum gain of 0.04% cm-1 was reported at the same 

conditions but at an 80 Torr discharge pressure.  In June 2007, OSU implemented 

UIUC’s technique and included NO in the gas flow through the discharge.  Maximum 

laser power was reported at 1.24 W with a gain of 0.049% cm-1.10  The gas flow was 

reported as a 15% O2/He mixture with 190 ppm I2 and 550 ppm NO at a discharge 

pressure of 107 Torr and a discharge power of 2.4 kW.  Both groups reported an increase 

in laser power by including NO in the gas flow through the discharge.  Because the E/N 

in pulser-sustainer methods is already ideal for the production of 2 ( )O a , the increase in 
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laser power may be attributed to the reduction in the quenching effect that O-atoms have 

on the I* density. 

  
 2.8 Scaling EOIL System 
 

UIUC has shown that an EOIL will operate at laser powers up to 102.5 W.64  The 

next step in the evolution of the EOIL weapon system is to show a path to scaling from 

100 W to kW, as well as higher output energy systems.  In oxygen-iodine laser systems 

the extractable power is determined by aY , as well as the number of 2 ( )O a  molecules in 

the system.  In order to scale laser power from the current system to a feasible weapon 

system, the oxygen pressure in the cavity must be increased, while aY  is held constant or 

increased.  The historic results of this system suggest that accomplishing this power 

scaling may be problematic.  

Figure 2.15 shows the results of both experiments, as well as computer models 

reported by many different research groups.  A large parameter space is explored in these 

studies, including different buffer gases, E-field frequency oscillations, coupled discharge 

power, and discharge geometries.2, 3, 12, 56, 59-63   

The general trend of the measured results shows a decrease in the achievable 

2 ( )O a  yield as a function of the partial pressure of oxygen.  There are three points shown 

in Figure 2.14 that break this trend.  They are the results of  Hill,57  Ionin,62 and  

Naparitovich.61  These three values are the result of computer models, implying that there 

may be a discrepancy between simulated and measured kinetics, which determine the 

value of 2 ( )O a  that is achievable within an oxygen glow discharge.  Understanding this 
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difference is important to determining the feasibility of using an electrically driven SOG 

within a weapon system.   

The research group at UIUC has scaled the output power of an EOIL device by 

two orders of magnitude since first light was achieved in 2005.64, 65  A number of 

different modifications have been made to the lasing system in order to increase output 

laser power.  One significant change made by the research group at UIUC is the number 

of flow tubes passing through the discharge region.  All of the flow tubes are combined 

after the discharge region before the iodine is injected into the gas flow. 

By increasing the number of flow tubes, from one in 200855 to six in 2010,64 the 

group has increased the volume of the laser resonant cavity, while maintaining a constant 

gain of approximately 0.26% cm-1.  It is of particular note that the number of discharge 

regions has been scaled, while holding the dimensions of the discharge region constant.  

This suggests the importance of the surface area to discharge volume and may be linked 

to gas kinetics governing the concentration of 2 ( )O a  within the discharge.   

Recent publications have expressed the need to completely define the chemical 

kinetics that dominate excited state populations for EOIL devices.65  Zimmerman et al. 

published a study on the effects of frequency and discharge geometry upon the discharge 

effluent.66  It was found that the conditions favorable for 2 ( )O a  production involve 

reducing the flow tube diameter, while increasing the residence time to limit the O-atom 

concentrations.   
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Figure 2.15  ■ Schmiedberg(RF)12; Hill(Controlled Avalanch)57;  ▲Rakimova(RF)17;  Ionin62;  
Naparitovich61;▼ Pchelkin(1978 MW)2;  ● Itami(1999 MW)60;  Savin63; x Carrol(RF)3; + Rawlins(2005 
MW)59; ● Rakimova16; ♦ super-elastic theoretical limit.16  Historical plot reporting the results of a number 
of different groups operating under various different pressures, power frequencies, discharge geometries. Both 
measured data and simulated data are reported. 

 
 
By reducing the radius of the flow tubes the surface area to volume ratio of the 

discharge will be increased.  Therefore the concentrations of any excited species that is 

primarily destroyed by collisions at the wall will be reduced.   A paper by Davis et al. 67 

discusses power scaling in a 1 to 5 kW supersonic discharge-flow reactor.  While 

coupling 1 to 5 kW of power via a microwave discharge into a gas flow, it was found that 

the quenching of I* by O-atoms is not fast enough to explain the loss of excited species 

within the gas flow.  This result points to a destruction mechanism which is other than 

direct collisions with O-atoms.  Lee et al. presented a study of catalytically produced 
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2 ( )O a  by using the flux of O-atoms that result from the discharge.68  In this work an 

iodine oxide catalyst is applied to the walls of the flow tube downstream of the discharge 

region.  Results suggest that the O-atoms created within the discharge region react at the 

walls producing 2 ( )O a .  Other excited species, such as vibrationally or electrically 

excited O2 and O3, may also be involved in the catalysis at the wall.68  A 2010 

publication by Azyazov et al.69 suggested that the production of vibrationally excited 

ozone is significant in plasmas with an excess of ground state oxygen.  This study argues 

that including this mechanism renders including the three-body reaction (reaction 24) 

unnecessary to reproduce measured [ ]2 ( )O a .  Recent publications by the EOIL 

community have established the need for a greater understanding of the governing 

kinetics involved in EOIL devices to allow scaling to kW laser powers.   
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III Equipment 
 

 
The apparatus is designed to study the behavior of an electric discharge-driven 

SOG.  A glow discharge is created by flowing pure oxygen contained in a glass flow tube 

through an intense electric field.  Oscillating electric fields are used at a microwave 

frequency of 2.45 GHz and a radio frequency of 13.56 MHz.  Emissions from the excited 

states of 2 ( )O a , 2 ( )O b , and various O-atom emissions are used to characterize the 

discharge.  Absolute concentrations of O-atoms are determined using the actinometry 

technique by comparing O-atom emissions to atomic argon emissions.   

 

3.1   Microwave Discharge 
 

A microwave discharge operating at 2.45 GHz sustains the glow discharge of a 

pure oxygen gas flow in a Pyrex tube.  This apparatus is shown in Figure 3.1. 

 
 

 
Figure 3.1  Schematic of the glow discharge apparatus. 
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The flow tube has an outer diameter of 1 cm and an inner diameter of 0.8 cm.  With the 

use of a bifurcated optical bundle, the emissions from both singlet states are collected 

simultaneously at a given spatial location within the discharge and in the discharge 

afterglow.  The fiber is located at the center of the discharge region and emissions are 

collected for an integration time of two minutes.  The observation region of the 

collimated optics is approximately one cm in diameter.  The discharge region in this 

study is also one cm in diameter and averages about 3 cm long; therefore, the optics 

gather light from roughly one third of the discharge region.  In order to measure the 

changes in the excited species as a function of residence time within the discharge the 

flow velocity of the gas is varied.  The emissions are spectrally resolved, and the intensity 

is determined by summing the emissions for each wavelength range.  For the 2 ( )O b  

emissions, the wavelength range is 761 nm to 768 nm, and for 2 ( )O a  is 1,240 nm to 

1,275 nm.  Two spectrometers are employed.   

A Roper Scientific InGaAs detector array, attached to a 0.33 meter McPherson 

spectrometer equipped with a 600 grooves/mm grating blazing at 1,250 nm, is used to 

observe the emissions from 2 ( )O a  centered at 1,272 nm.  The slit width of the 

monochromator is 250 µm, resulting in a spectral resolution of approximately 1.7 nm.  

The InGaAs array is cryogenically cooled to approximately -100° C.  Also, a Roper 

Scientific intensified charged-coupled device (CCD) array, attached to a 1.33 meter 

McPherson spectrometer equipped with a 2,400 grooves/mm grating blazing at 700 nm, 

is used to observe the 2 ( )O b  emissions centered at 762 nm.  The slit width is 10 µm, 

which yields a resolution of approximately 0.01 nm.  The spectral resolution of the 
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emissions allows the removal of interference of other emitting species within the spectral 

band of the excited state emissions.  The total intensity of the emissions is determined by 

summing the molecular emissions of the appropriate frequency range:  761 to 768 nm for 

2 ( )O b  and 1,240 to 1,275 nm for 2 ( )O a .   
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Figure 3.2  Comparison of the (▬) theoretical black body � 1K to the (▬) experimental black body. 
 
 
 
The detectivity of both detectors is a function of the wavelength of the light being 

detected.  This dependence is determined using a black body light source for calibration.  

The emissions of a 1,000° K black body are measured and compared to the theoretical 

intensities.  The gratings are positioned to center the desired wavelengths upon the 
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detector arrays.  The emissions from the black body, as detected by the InGaAs array, are 

shown in Figure 3.2. 

The theoretical calculation includes an uncertainty of plus or minus 1° K.  The 

ratios of the measured and theoretical values are the detectivity factor, shown in 

Figure 3.3. 
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Figure 3.3  The detectivity factor of the InGaAs array used to measure the O2(a) emissions from the 
discharge. 
 

 
 
The dark current of the InGaAs array has structure; therefore, it is important to be 

careful when subtracting the dark current signal from the measured emissions.  The dark 

current is measured over the two-minute integration time and subtracted from the 

measurements, as shown in Figure 3.4.  The pixel-by-pixel change in dark current is not 
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wavelength-dependent and is confirmed to be typical by the manufacturer of the detector 

array.   
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Figure 3.4  Subtraction of dark current from the measured intensity. ▬ raw data  ▬ data after 
background subtraction. 

 

An isolated atomic oxygen peak is used to calibrate the resolution of the 

spectrometer.  In Figure 3.5, the resolution of the system is determined by fitting a sum of 

Gaussian peaks to the measured emission from the 5F-3D atomic emission at 1,257 nm.  

The asymmetry in the peak is due to a slight misalignment of the detector and grating. 

The calibration of the pixel number to wavelength is established by the spectrum itself.  

The fit for the 1.33 meter spectrometer is 0.00717 nm/pixel, and the fit for the 0.33 meter 

spectrometer is 1.925 nm/pixel.      
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Figure 3.5  The 5F-3D atomic emission at 1,257 nm is used to determine the resolution of the 0.33 m 
monochromator used to monitor O2(a) emissions.  Resolution is determined to be 0.15 nm.  Peak is a 
sum of two Gaussian peaks. 

 
 

Emissions from both the 2 ( , )O a b  states are observed simultaneously, using a 

bifurcated fiber bundle.  A 1 cm diameter collimating lens is positioned on the end of the 

bundle.  The acceptance angle of the fiber is 68 degrees.  Combined with the aperture 

stop, this determines a spatial resolution of 0.5 cm.  The fiber bundle is positioned 

perpendicular to the flow tube and mounted on a sliding mount, allowing for parallel 

displacement along the flow tube.  The focusing lens is located 1.5 mm from the edge of 

the Pyrex flow tube to maximize the spatial resolution.   

The physical dimensions of the discharge are determined by the point at which the 

plasma begins to glow and where it stops glowing.  The discharge glow is used as an 
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indication of electron density, and the point at which it terminates indicates the lack of 

electrons in the gas flow.  The length of the discharge plays a role in the power loading as 

well as the residence time of the gas. 

    The plasma typically terminates a couple of millimeters outside of the µ-wave 

cavity; however, at low pressures and flow velocities, the length of the discharge region 

extends beyond the dimensions of the cavity.  The variation in the plasma dimension as a 

function of mass flow rate is shown in Figure 3.6 for a number of different pressures.   
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Figure 3.6  The length of the discharge as mass flow rate changes.  ○ 2 Torr, ●  3 Torr,  4 Torr, ▲ 
5.2 Torr,  6.4 Torr, ▲  7.5 Torr,  8.6 Torr. 

 

The flow rate of the input gases is controlled using a Sierra Series 840 Side-Trak Mass 

Flow Controller calibrated to control nitrogen from 0 to 2,000 SCCM with a resolution of 
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8 SCCM.  For the calculation of residence for the temperature measurements included in 

this document these pressure and flow rate lengths are used.  For the discharge volume 

calculation included in Chapter 4, an average value for discharge length of 3 cm is used 

in for calculations throughout this work. 

The pressure is measured using an MKS, Model 690A, 10 Torr, Capacitance 

Manometer.  The lowest achievable pressure is less than 1x10-3 Torr, which is beyond the 

range of the head.  The vacuum pump is an Alcatel 2063C2 rotary vane pump.  An 

Evenson cavity operating at 2.45 GHz with a range of 0 to 100 W controlled by an 

Opthos power supply is employed to produce the glow discharge in the gas flow.   

Figure 3.7 shows the velocity versus the mass flow rate of the gas at a pressure of 

4 Torr. 
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Figure 3.7  Velocity as a function of mass flow rate at 4 Torr. 
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Figure 3.7 shows that the gas velocity ranges from 800 to 15,000 cm/s, while the mass 

flow rate ranges from 2 to 2,000 SCCM.  The gas flow is adjusted by the throttle valve to 

maintain a certain pressure (in the case of Figure 3.7, 4 Torr). 

3.2 RF Discharge 
 
Using an RF electric field to maintain the electric discharge is very similar to the 

microwave approach.  The field is coupled into the gas by two copper rings positioned 10 

cm apart with a width of 1 cm.  The RF generator is a Dressler Cesar 1310 operating at 

13.56 MHz with a power ranging from 0 to 1,000 W.  The RF power generator is 

matched to the plasma flow tube using a VarioMatch matching network supplied by 

Dressler.  The auto-matching network is calibrated for frequency ranges from 13 to 27 

MHz and up to 1 to 1.5 kW, depending on the frequency of the field oscillations.  A 

schematic of the RF discharge experiment is shown in Figure 3.8.   

 
 

 
Figure 3.8  Schematic of the RF glow discharge apparatus. 
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 The 1.33 and 0.33 meter monochromators used in the RF experimental apparatus 

are the same as those used in the microwave experiment.  Therefore, their calibration and 

resolution are measured and performed with the same results as reported in Section 3.1.  

The argon inserted into the gas flow is used to monitor the O-atom concentrations via the 

actinometry technique, which was explained in Section 2.6.   
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IV Results 

 
4.1   O2(b) Spectrum and Gas Temperature Measurement 

 

The rotational spectra of the 1 3
2 ( )O b XΣ → Σ (0,0) and (1,1) bands near 762 nm 

are shown in Figure 4.1.  Only the even number J values are observed due to the selection 

rules discussed in Section 2.4.2.  The spectral resolution of the reported 2 ( )O b  emissions 

is slightly better than the results currently in the literature, which generally have a 

spectral resolution of 0.04 nm or greater.15   

λ (nm)

760 765 770 775

In
te

ns
ity

 (c
nt

s)

0

5000

10000

15000

20000
PP

PQ

0

2

2 4

4
RR

RQ

PP

PQ

RR

RQ

0   2   4

2 4

16O2: 1-1 Band

16O2: 0-0 Band

O-Atom Transition 5S° -  5P 

 
Figure 4.1  The emission spectrum of the O2(b) excited state, inside the µ-wave discharge, 4 Torr, flow velocity of 
20 m/s, measured using the 1.33 meter spectrometer. 
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This added resolution permits the observation of the atomic emissions from the O-atom 

ion transition (4D-4Do) at 766 nm; O-atom ion transition (3P-3So) at 771 nm; and 2 ( )O b  

(1-1) band centered at 771 nm.  Clear identification of these emissions permits the 

extraction of their contributions from the measured intensities and results in a greater 

certainty of the temperature measurements reported in this work. 

The RQ, RR, PQ, and PP branches are readily observed and assigned in Figure 4.1.  

The emissions from 5 5( )O S P→  around 777 nm are observed at the far end of this 

spectrum.  The (1-1) emissions centered on 771 nm are also observed.  The lifetime of the 

2 ( )O b  state is about 1.1 s, allowing the nascent distribution to be collisionally relaxed.  

Therefore, it is possible to measure the gas temperature by measuring the molecular 

rotational temperature.   

Figure 4.2 illustrates the statistical distribution of emission intensity versus the 

rotational energy of the excited state.  The highly linear nature in Figure 4.2 exhibits the 

statistical nature of the emissions, arguing that the reported rotational temperatures will 

be representative of the gas temperature.  As discussed in Section 2.4.2, Equation 2.4, the 

slope of this line is used to extract the rotational temperature of the 2 ( )O b  (0-0) excited 

state.  The intensities are obtained from a fit to the area of a Gaussian lineshape.  The 

reported Ib is the peak intensity of the Gaussian fit, while the width of all the peaks are 

held constant. 
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Figure 4.2  Natural log plot of emissions from O2(b) (0,0) state plotted versus energy used to extract gas 
temperature from emissions. ● are the PP branch and ● are the PQ branch. 
 
 
 

The error bounds represent the uncertainties in the fit areas, as generated by the 

PeakFit program,86 which is typically 0.01%.  Several gas temperatures have been 

previously reported in the literature, 3, 7, 15, 17, 18, 70, 71  with extracted temperatures of 

Tg = 400 to 1,300 K and uncertainties of ∆T = 20 to 61 K.  The integrated intensity of the 

O2(b-X) (1,1) band of Figure 4.1, relative to the (0,0) band, is 9.2 +/- 0.3 %, 

corresponding to a vibrational temperature of 896 ± 35 K.  Both the PP and PQ branches 

yield similar temperatures; Tg = 720 �  19 and Tg = 721 �  20.  Gas temperature plays an 

important role in emission intensity and is discussed further in Section 4.2.  
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4.2 Gas Flow Velocity and Residence Time 
 

The gas temperatures, Tg, measured at the midpoint of the discharge as a function 

of oxygen flow rate and pressure are shown in Figure 4.3.  Note the oxygen flow rate 

may be changed independent of pressure by throttling the pump valve.  The 

measurements reported in Figure 4.3 are for a microwave frequency discharge with a 

100% oxygen gas flow. 
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Figure 4.3  Gas temperature as a function of flow rate: ○ 2 Torr, ●  3 Torr,  4 Torr, ▲ 5.2 Torr,  
6.4 Torr, ▲  7.5 Torr,  8.6 Torr. 
 
 
 

The gas temperature, Tg, decreases significantly from approximately 1,000 K to 

600 K as the flow rate increases.  However, the gas temperature appears to increase 
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slightly as a function of pressure.  As discussed in Section 2.5, flow rate may be 

converted to a velocity, given the flow tube geometry, gas temperature, and gas pressure.  

If it is assumed that the velocity of the gas is a constant throughout its travel through the 

discharge region, the time that the gas spends within the discharge is: 

o
r

g

l t
v

=         (4.1) 

where l is the length of the discharge region, gv  is the velocity of the gas flow, and o
rt is 

the amount of time the gas resides within the discharge.     
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Figure 4.4  Gas temperature as a function of residence time for gas pressures: ○ 2 Torr, ●  3 Torr,  
4 Torr, ▲ 5.2 Torr,  6.4 Torr, ▲  7.5 Torr,  8.6 Torr. 
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The validity of the constant velocity assumption is discussed further in 

Section 4.3.1.  The length of the discharge changes at different temperatures and mass 

flow rates; so, the length is measured in the lab and varies from 2 to 4 cm.   

Tg as a function of residence time is shown in Figure 4.4.  The gas temperature 

increases dramatically when the gas enters the discharge, changing from room 

temperature to 1,200 K in one millisecond.  It then comes to a steady-state.  As discussed 

in Section 2.5, it is appropriate to map residence time to a pressure normalized time, '
rt , 

which collapses the pressure dependence of the data.  The effect of this mapping is shown 

in Figure 4.5.   
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Figure 4.5  The gas temperature as a function of the ● residence time, tr

0, lower axis and ● pressure 
normalized time, tr’, upper axis. 
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The collapse of the temperature profiles using a pressure normalized time argues for 

using a pressure-independent temperature profile, as derived in Section 2.5,  

Equation 2.18.  This theory is used throughout the remainder of this work.  The velocity 

calculations and, hence, the residence times have been calculated assuming the gas 

temperature is constant.  Using the temperature profile, the effects upon gas velocity and 

resonance time will now be explored.   

4.3 Effects of Time-Dependent Temperature 
  

The pressure gradient in the flow tube is not large enough to affect the number 

density within the gas flow, < 0.1 Torr m-1.  So, the pressure is assumed to be constant 

along the length of the flow tube.  A schematic of a flow tube with a discharge beginning 

at position x0 and ending at position x1 is shown below. 

 

 
 

Figure 4.6  Schematic of a gas flow tube with positions 0 and 1 indicated. 
 
 
 

According to mass conservation, if the gas density, ρ, changes, then the velocity, 

vg, must change.  Therefore, when discussing populations as a function of time, the 

temporal axis is a function of the flow velocity, which is a function of the gas 

temperature.  The relationship between length, flow velocity, and residence time is: 

1 1 1gv xρ 0 0 0gv xρ

LLeennggtthh  ooff  DDiisscchhaarrggee  
GGaass  

FFllooww  
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1 1

0 0

( ) ( )
t x

g g
t x

dx v t v t dt dx l
dt

= ⇒ = =∫ ∫      (4.2) 

where l is the length of the discharge region, as defined in Figure 3.6; vg(t) is the time-

dependent gas flow velocity; x0 is the position at which the gas enters the discharge; x1 is 

the point at which the gas exits the discharge; t0 is the time at which the gas enters the 

discharge; and t1 is the time at which the gas exits the discharge.  The velocity of the gas 

is a function of the time-dependent pressure based on the ideal gas law and mass 

conservation.  Starting with the ideal gas law: 

B g
NP k T
V

=         (4.3) 

where P is pressure, N is the number density, V is the volume, Bk  is the Boltzmann 

constant, and Tg is the gas temperature.  Mass conservation law dictates: 

1 1 0 0v vρ ρ=          (4.4) 

where ρ is the density of the gas.  Assuming that pressure is constant along the axis of the 

flow, manipulation of these two equations shows the time-dependent gas velocity: 

0
0

( )
( ) gT t

v t v
T

=
        (4.5) 

From Section 2.5, Equation 2.18, the time-dependent temperature is modeled as: 

( )
'

'

 
' 0

 
0

 ( )
 

r

r

t

g r t

T eT t
T e

γ

γ

γ
β α

=
+

      (4.6) 

So, 
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∫ ∫     (4.7) 

  

Solving Equation 4.7 for tr yields: 

( )( ) 

0
1 ln  e

l
v

rt T
α

β α β
γ

= − +      (4.8) 

Note that the solution for the time-dependent temperature, Equation 4.6, is in terms of '
rt .   

Time, using v(t), tr, (ms)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Ti
m

e,
 c

on
st

an
t v

el
oc

ity
, t

r0 , (
m

s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 
Figure 4.7  Comparison of residence time, defined by Equation 4.1, assuming a constant velocity 
throughout the discharge region, as opposed to using the time-varying velocity, at P = P0. 

 

Therefore, pressure normalization is built into the solution of tr.  tr is the amount of time 

the gas resides within the discharge region, taking into consideration the time variation of 
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the velocity within the discharge.  The effect of time varying temperature on the overall 

residence time will be explored in the following discussion. 

 

4.3.1 Time Varying Velocity 

The velocity of the gas flow changes as the temperature of the gas changes.  This 

change in velocity will affect the amount of time the gas resides within the discharge 

region.  However, gas temperature reaches a steady-state value almost immediately 

within the discharge region, as shown in Figure 4.5.  Because Tg comes to steady-state so 

quickly, the only period in which the time varying velocity calculation differs from the 

constant temperature calculation is in the first few milliseconds of the discharge.  

Therefore, the effect of including the time varying velocity is expected to be small.  In 

Figure 4.7, the residence time is reported using constant and time varying velocities.  The 

linear relationship between these two values shows that the residence time of the gas is 

virtually unaffected by the velocity change within the gas. 
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Figure 4.8  Two plots showing the difference in the temperature versus time plot made by including a 
time-dependent velocity.  ● plot using 

rt′  and ● plot using tr. 

 
 

Figure 4.8 shows the gas temperature as a function of both forms of the residence 

time, tr and '
rt .  As expected, the figure shows very little difference between the two plots.  

This is because the temperature varying velocity does not have a significant effect upon 

the residence time of the gas.  Even though a change in velocity has a negligible effect on 

the residence time of the gas, the large temperature change as the gas enters the discharge 

requires that the gas temperature be well defined. 

 

 

rt′
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4.4   Power Loading in Gas Flow  
 

When analyzing plasmas sustained in flowing gases, the temperature of the gas 

plays an important role.  The temperature of the gas changes many important parameters:  

the kinetic rates, the gas flow velocity, and the number density of the emitters in the gas 

flow.  The intensity of the emissions from the 2 ( )O a  state, Ia, is dependent on the 

concentration of the excited state [ 2 ( )O a ] and, therefore, dependent on Tg, as governed 

by the ideal gas law.  Also, the velocity of the gas flow determines the period of time in 

which the gas resides within the discharge region, affecting the energy deposited into the 

gas.  The energy deposited into the gas plays a large role in determining the EEDF, which 

drives reaction rates of all reactions involving electrons.  So, an in-depth understanding 

of the gas temperature in the flow is essential to interpretation of the system kinetics. 

As discussed in Section 2.7, the functional form of the time-dependent gas 

temperature, Tg(t), may be used to determine the value of the heat transfer coefficient of 

oxygen, hT, and the fraction of energy coupled into gas heating, f, of the system.   

Fitting this functional form to the measured temperature data yields values of: 
 

( )

5 2
0

ss

0

6.4 10  
T 3900 

640 

ss
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T T K
s

T T K
α

= ×
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− =

        (4.9) 

 
for the parameters in Equation 2.24.  This system of equations can be solved giving 

values of:  

0

ss

542 18 
T 1182 10 

3.3 0.3 

T K
K

sα

= ±
= ±

= ±
        (4.10) 
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for the fit parameters.  These results are then used to calculate values for hT and f, as 

follows.  Using Equation 2.14: 

0( )g
p in T g

dT
VC fP Sh T T

dt
ρ = − −       (4.11)  

 
α  may be written as:  
 

T

P

Sh
VC

α
ρ

=          (4.12) 

 
The values for this calculation are: 

  Cp = 1,005 J kg-1 K-1, V = l π r2 = 2.36 x 10-6,     (4.13) 

where l = 0.03 m, r = 0. 5 cm.  

The density of oxygen is: 

 ρ = (1.41x 103) (7.5/760) (300/1200) kg m-3     (4.14) 

at 7.5 Torr and 1,200 K.  The fraction of the energy coupled into the overall gas heating 

is found from the determination of the value for β, where:   

 in

P

fP
VC

β
ρ

=          (4.15) 

 
The value of β is determined from the values of Tss, T0, and α  by the relationship: 
 

 0
ss

TT α β
α
+

=         (4.16) 

 
The power coupled into the gas, Pin, is 85 W, and, from Kays and Crawford,40 kT = 

0.0717 (W m-1 K-1).  The theoretical model is fit to the measured temperature data, and 

the following values for hT and f are extracted:   
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-2 -129 7   (W m K )
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Th
f

= ± ⋅ ⋅
= ±

      (4.17) 

 

From the extracted value of hT, the Nusselt number, Nu, may be calculated:   

4.08 1.05T

T

h D
Nu

k
= = ±        (4.18) 
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Figure 4.9  Temperature as a function of time in the discharge is governed by power balance of heat 
coupled into the discharge and heat lost to the wall.  Only a fraction of the power is coupled to heat 
○ 2 Torr, ● 3 Torr,  4 Torr, ▲ 5.2 Torr,  6.4 Torr, ▲ 7.5 Torr,  8.6 Torr, ▬ Theoretical fit. 

 
 

The expected Nu is 4.364 for cylindrical geometries.40  This value is well within 

the error of the determined value.  The steady state temperature , Tss = 1182 ±  10, is 

significantly lower than anticipated if heat transfer to the wall or flow of excited species 
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out of the discharge is not considered.  The fit result  f  =  0.17 ± 0.02 implies most of the 

discharge power does not raise the gas temperature.  The analysis presented in Appendix 

B indicates that significant power is transferred to the reactor walls via atomic oxygen 

reactions.  The reactor wall requires active cooling with compressed air to prevent glass 

softening.  Indeed, thermal control and surface reactions appear important in most EOIL 

demonstrations.   

   

Position, z, (cm)
0 10 20 30 40 50 60 70

Te
m

pe
ra

tu
re

, T
, (

K
)

250

300

350

400

450

500

550

600

650

Time, t, (ms)

0 10 20 30 40 50 60 70

 
Figure 4.10  ● Measured7, ▬ Stafford7, ▬ Nu = 4.22 and f = 17%, using equation 2.18 to describe the 
heat transfer and setting the input power outside of the discharge to zero, the theoretical result is 
compared to the measured results of Carroll and simulated results of Kushner. 
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Using the functional form of gas temperature determined in Equation 2.18, values 

for hT and f may be extracted from the results reported by Stafford and Kushner.7   The 

measured data in Figure 4.10 are the results of an experiment performed by Carroll et al. 

at UIUC and reported by Stafford and Kushner.7  The flow tube has a 4.83 cm ID with 

265 W of coupled power, via an RF field, into a flow of pure O2 at 5 mmol/s and the 

pressure being held at 2 Torr. 

The fit of Equation 2.18 to the measurements reported by Stafford is shown in 

Figure 4.10.  From position z = 0 to 20 cm, the gas is within the discharge region; at 20 

cm, the discharge power into the system is set to zero, representing the end of the 

discharge region.  The differential equation that describes the decay of temperature 

without an energy source is a simplification of Equation 2.14: 

0( )g
p T g

r

dT
VC Sh T T

dt
ρ = − −       (4.19) 

The solution to this differential equation is: 

  

0( ) 1  
T

r
p

h S t
C V

g rT t T e ρ
− 

 = +
 
 

      (4.20) 

Therefore, outside of the discharge, the temperature decays exponentially, which is 

clearly the case in Figure 4.10. 

  Using a least-squares fitting method inside the discharge region, the values of hT 

and  f for the UIUC results are fit to data from 0 to 20 cm, resulting in a Nu value of 4.22, 

which is again very similar to the theoretically expected values of 4.364.  It is predicted 

that only 17% of the power coupled into the gas results in heating.  The fraction of power 
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coupled into gas heating in µ-wave discharges and RF discharges is approximately the 

same for these studies.  This is an unexpected observation, because the E-fields are 

different, and the geometry of the two experiments is different.  The fraction of the 

energy coupled into the gas flow will be discussed later in this work. 

 

4.5   O2(a)Yield 
 

In the COIL, population inversion of the iodine atoms is achieved using the 

2 ( )O a  state as an energy reservoir.  The quantity of extractable power is determined by 

the ratio of [ 2 ( )O a ] and [ ]2 ( )O X  in the system.  Optical monitoring of the emissions 

from the excited states provides a convenient way to determine number density and not 

perturb the performance of the SOG.  The relationship between number density of the 

emitting species and the emission intensity is:  

a r ij iI C A N=         (4.21) 

where Ia is the emission intensity; Aij is the Einstein A coefficient for the transition; Ni is 

the number density of emitting species in the discharge; and Cr is a factor, including the 

radiometry of the detection system.  

4.5.1   O2(a) Spectrum and Modeling 
 

The O2(a1∆g→X3Σg
-) spectrum centered near λ =  1.268 µm has nine rotational 

branches (∆K∆J = OP, PP, PQ, QP, QQ, QR, RR, RQ, SR), as discussed in Section 2.4.1.37  

The lifetime of the 2 ( )O a  state is 64 minutes, making emission strengths weak.20  Thus, a 

spectrometer with lesser spectral resolution than that used for the measurement of 2 ( )O b  
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is used to increase the throughput and signal to noise ratio.  The rotational features are 

not resolved as they were for the 2 ( )O b  emissions.  A typical 2 ( )O a  spectrum measured 

5 cm downstream of the discharge is shown in Figure 4.11. 

The simulation of the 2 ( )O a  emissions, also shown in Figure 4.11, is a sum of 

Lorentzian peaks, all with the same width of 0.15 nm and relative intensities governed by 

a Boltzmann temperature distribution at 600 K.  

 

Wavelength, λ, (nm)
1240 1250 1260 1270 1280 1290 1300

In
te

ns
ity

, I
a, 

(C
ou

nt
s)

0

2000

4000

6000

8000

10000

 
Figure 4.11  Typical O2(a) spectra resulting from the discharge and a simulation of the spectra, at 4 
Torr, 600 K, and 500 SCCM, 5 cm downstream of the discharge. ○ measured emissions, ▬ simulated 
emissions. 
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The temperature is a fit parameter of the model and yields values very similar to 

the results determined using the 2 ( )O b  emissions in the same position along the flow 

tube.  Peak locations and Einstein A coefficients are extracted from the HITRAN 

database for the 16O2 (a1∆-X3Σ) (0-0) and 16O-18O (a1∆-X3Σ) (0-0) transitions. The 1-1 

transition is centered on 1,280 nm; therefore, the contribution from this emitting state is 

included in the simulation.  The Einstein A coefficient of the 1-1 transition is assumed to 

be the same value as the 0-0 transition with the 0-0 line positions scaled by the 

appropriate energy difference.37  

Outside of the discharge region, the O2(a→X) spectrum is well isolated from 

contaminating emissions.  A number of excited O-atom states are populated within the 

discharge, resulting in several atomic oxygen emission lines dominating the spectrum, as 

shown in Figures 4.12 and 4.13.  In Figure 4.12, the strong 3F – 3D (1,257 nm) and 1,299 

nm lines bracket the O2(a→X ) emission. In Figure 4.13, the emissions in the spectral 

range of 1,266.8 to 1,277 nm are shown to be largely isolated from atomic emissions.  

The Q-branch structure is still clearly evident.  The λ = 1,266.8 to 1,277 nm region is 

integrated to provide a relative measure of 2 ( )O a  concentration.  The weaker 3D-3P and 

3S-3P lines at 1,265 and 1,278 nm are outside of this integration band.  Spectral 

simulations of the O2(a→X) emission have been developed to assess the dependence of 

the band shape on rotational temperature. 
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Figure 4.12  Emissions from inside the discharge in the wavelength region of O2(a), at 4 Torr, and 
500 SCCM. ○ measured data, ▬ simulated spectrum. 

 
 

The gas temperatures inside and downstream of the discharge are significantly 

different.  From the 2 ( )O a  simulation in Figures 4.11 and 4.13, Tg is 600 K 5 cm 

downstream of the discharge and 1,100 K directly inside the discharge.  The temperature 

determined inside the discharge is in excellent agreement with the 1,200 K determined 

from the 2 ( )O b  emissions.  The possible sources of inaccurate determination of the Ia 

values extracted from the measured data are the wings of the O-atom emissions.  Figure 

4.14 will take a closer look at these contributions. 
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Figure 4.13  Rescaled view of emissions from inside the discharge in the wavelength region of O2(a), 
at 4 Torr, and 500 SCCM.  ○measured data, ▬ simulated spectrum. 

 
 

Figure 4.14 shows the simulated spectrum with the contribution from the 2 ( )O a  

(0-0) transition subtracted from the total spectrum.  The remaining signal is made up of 

the 2 ( )O a  (1-1) transition, as well as the contribution from the O-atom emissions. 

Summing the remaining signal in the wavelength range of 1,266.8 to 1,277 nm and 

dividing by the sum of the 2 ( )O a  emissions, it is determined that less than 9% of the 

signal is made up of emissions not directly linked to the 2 ( )O a  emissions. 



www.manaraa.com

 74 

Wavelength, λ, (nm)

1250 1260 1270 1280 1290

C
ou

nt
s 

(A
rb

. U
ni

ts
)

0

200

400

600

 
Figure 4.14  Simulation of O2(a) with contribution from the (0-0) transition removed.  ● simulated 
spectrum with O2(a) (0-0) contribution removed, - - O2(a, 1-1), ▬ O-atoms. 

 
 
Many research groups use 2 ( )O a  detection techniques, which simply include a 

detector and a band pass filter or very low resolution spectrum analyzers with a 

bandwidth of 100 nm.2, 11, 12  These techniques, while sufficient if the detector is an 

appropriate distance downstream of the discharge, will give erroneous results if the 

atomic emissions are not included in one’s analysis. 
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  4.5.2   O2(a) Yield  Calculation 

The intensity of the emissions is dependent on the number of emitters present in 

the field of observation, as well as the Einstein A coefficient, Aij, of the excited state.  

The gas is heated significantly within the discharge, and the number density is changed 

accordingly.  Therefore, the change of the emission intensity as a function of temperature 

must be accounted for if the kinetics are to be extracted from the measurements.  Also, 

collision frequencies are influenced by particle densities.   
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Figure 4.15  Intensity measurement of the O2(a) emissions versus the mass flow rate: ○ 2 Torr, ●  3 
Torr,  4 Torr, ▲ 5.2 Torr,  6.4 Torr, ▲  7.5 Torr,  8.6 Torr. 

 
 

In order to determine the change in the yield of 2 ( )O a , aY , as a function of 

pressure and residence time, the measured quantities are the intensity of the 2 ( )O a  
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emissions, Ia, and mass flow rate, n .  The dependence of Ia on the gas temperature, Tg, 

has been explained, and the effects have been removed from the measured data in order 

to study the chemical kinetics of the system.   
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Figure 4.16  Intensity measurement of the O2(a) emissions versus residence time: ○ 2 Torr, ●  3 Torr, 
 4 Torr, ▲ 5.2 Torr,  6.4 Torr, ▲  7.5 Torr,  8.6 Torr. 
 
 

The data, Ia versus the mass flow rate, n , is shown in Figure 4.15.  The intensity 

of the 2 ( )O a  emissions, Ia,  has about a 10% error bound with a decreasing trend as a 

function of the gas pressure and a slight decrease at higher mass flow rates.  The previous 

analysis of gas temperature is used to map from the mass flow rate, n , to the residence 

time, tr, resulting in Figure 4.16.  In Figure 4.16, the high mass flow rates correspond to 

the largest velocities, which, in turn, become the shortest residence times.  The slight 
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change in intensity at the high mass flow rates is more apparent, showing that, before the 

intensities come to a constant value within the first millisecond of entering the discharge 

region, the concentration of 2 ( )O a  increases. The reason for measuring the 2 ( )O a  

emissions is to study the changes in yield as a function of pressure and velocity, so yield 

can now be calculated. 

 
4.5.3   Scaling Emission Intensity of O2(a) to Yield 

The intent of this study is to explore the mechanism responsible for limiting the 

yield of 2 ( )O a achievable within electric discharges in oxygen gas flows as oxygen 

partial pressure increases.  A mapping of measured 2 ( )O a  emission intensity, Ia, to the 

absolute concentration of 2 ( )O a , [ 2 ( )O a ], is not necessary to determine plasma 

conditions that maximize 2 ( )O a  production.  However, the majority of literature that 

discusses EOIL systems reports results in terms of the yield of 2 ( )O a .3, 8, 13, 17  In order to 

compare the current results to those published in the literature, a scaling term, kr, will be 

determined that will enable the comparison of the intensity measurements to the yields 

reported in the literature.   

The parameter energy per particle, ξpart, of the system is commonly used in 

literature.7, 16  ξpart is the energy coupled into the gas divided by the number of particles 

that flow through the plasma volume.  Note that the number of particles flowing through 

the discharge volume is time-dependent. 

 The coupled power, length of the discharge, radius of the flow tube, flow velocity 

of the gas, gas stoichiometry, and gas pressure all vary between experiments.  By using 
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the parameter, energy per particle, results from a variety of different discharge conditions 

may be compared.  The ξpart for the measurements made in this study may be written as 

the coupled power times the residence time of the gas divided by the number density of 

the gas:   

2[ ( )]
in r

part
P t
O X

ξ ×
=

       (4.22) 

 
Figure 4.17 shows the 2 ( )O a  emissions, measured in this work, for a plasma, 

sustained by an electric field oscillating at the same frequency, with the same geometry, 

and the same flow conditions, as reported by Rakimova.17  The scaling term, kr, is 

determined by comparing the RF results to those by Rakihmova and assuming that 

concentrations of singlet oxygen will be the same under the same discharge conditions.  

Note that the inner diameter of the flow tube used in this study is 1 cm, which is 0.05 cm 

smaller than the flow tube used in Rakimova’s work. This discrepancy is because the 

wall thickness of the flow tubes in the two studies differs.   

The 2 ( )O a  emissions were collected for three pressures, 2, 4, and 7 Torr.  When 

measuring the 2 Torr case, the flow tube overheated when the gas flow within the 

discharge was insufficient to cool the tube.  As a result, analyzing the 2 Torr case is 

difficult, because the gas does not reside in the discharge region for a time long enough to 

determine a steady-state population for this pressure.  However, a scaling term may be 

determined when using the 4 and 7 Torr measurements. 
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Figure 4.17   Emission intensity of O2(a) as a function of energy per particle in the current RF 
discharge.   2 Torr, ○ 4 Torr, □ 7 Torr. 
 
 

The scaling term, kr, was calculated for the 4 Torr case and was found to be 

accurate for the 7 Torr results as well, showing that the relationship between Ia and 

[ 2 ( )O a ] is linear over the pressure range 4 – 7 Torr.  Discussing these results in terms of 

yield requires a calibration of the detection system, which results in reporting 

concentrations with an error greater than 20%.  The majority of the arguments included in 

this work will depend only on the relative changes in concentration.   

The yield of 2 ( )O a  in the system is calculated from the intensity of the emissions, 

the gas temperature, and scaling to results reported by Rakimova17:   

2

,  
[ ( )]

a
a Y

IYield Y k
O X

= ×       (4.23) 
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Scaling to Rakimovark =  

 
 
where aI  is the measured intensity of the emissions; 2[ ( )]O X  is the number density of 

the ground state oxygen within the flow tube, including the affect of gas temperature.  

Note that the temperature dependence of the emitter is already built into the yield 

calculation via the temperature-dependent ground state population results.  

The scaling term is determined by comparing the RF results to those by 

Rakihmova.  Both measurements are made using RF discharges, the same deposited 

energies ranging from 0.5 to 7.5 electron volts per particle.  The error bars are 

representative of the error associated with calibrated optical HPGe detectors used in the 

literature.  There is the possibility of an error being introduced to the results by using this 

scaling system.  However, discussions in chapter 5 are based on the relative change of 

yield and not the absolute yield.  In the discussion of quenching mechanism, the absolute 

yields will play a significant role only if they are orders of magnitude different from 

calculated results.  It is unlikely that the system is giving results below 5% yields or 

greater than 15% yields. 
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Figure 4.18  Yield as a function of energy per particle in an RF discharge, as reported by Rakimova 
(solid points) and this work (hollow points). ○ 4 Torr, ● 4 Torr Rakimova, □ 7 Torr, and ■ 7 Torr 
Rakimova.17 

 
 

Mapping the Ia measurements to yields allows comparing these results to other 

published works, as well as comparing them to computer-simulated concentrations.  

Besides 2 ( )O a , electrons and atomic oxygen are expected to have significant 

concentrations within the glow discharge.  The atomic oxygen density is determined 

using the actinometry technique, which is discussed in Section 4.7.  The electron density 

of the glow discharge is determined by a computer model.  The specifics of the computer 

model used to simulate the oxygen discharges in this study are discussed in Section 4.6. 
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4.6 Results of Simulations 

Current systems that model electric discharges in oxygen include a large number 

of pathways for creating and destroying species within the discharge.  These numerical 

models yield results which fail to reproduce pressure trends in 2 ( )O a  concentrations.  

Determining means to correct models is complicated by the extensive kinetic packages 

implemented in these models.  In this study, we seek to understand why the 2 ( )O a  yield 

decreases as a function of the oxygen pressure within the gas flow.  The roles of electrons 

and atomic oxygen in the destruction of 2 ( )O a  are of particular interest to the EOIL 

community.  In order to understand the chemical kinetics, a simulation involving only the 

essential chemical kinetics is developed.  In this section, the streamlined simulation used 

in this study is described.   

 

4.6.1   Simplified Analytic Expression of Kinetics  
 

The reactions included in the analytic representation of the system are shown in 

Table 2.1. The electron density in the system, at steady-state, is determined primarily by 

direct ionization of ground state molecular oxygen (reaction 3) and recombination of 

electrons with positive molecular ions (reaction 5):   

2 2

2 2

2

( )

( )

( )

Diffusion from Discharge

ion

rec

attach

diff

k

k

k

k

e O X O e e

e O O X

e O X O O

e

− + − −

− +

− −

−

+ → + +

+ →

+ → +

→

      (4.24) 

Electron loss is dominated by attachment thereby eliminating any change in the electron 

density due to collisions at the wall.  The relative rates will be calculated later. 
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O-atoms are generated by the electron impact of ground state oxygen (reactions 

13-15) and destroyed by recombination at the walls (reaction 19):   

3 3
2

3 1
2

3 3
2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

O

O

Wall

k

k

k

e O X O P O P e

e O X O P O D e

O P O P O X

− −

− −

+ → + +

+ → + +

+ →

     (4.25) 

The concentration of 2 ( )O a  is determined by direct electron impact with ground 

state molecular oxygen (reaction 10) and the inverse reaction, as determined by using 

detailed balance (reaction 17):  

2 2

2 2

( ) ( )

( ) ( )

a

a

k

k

e O X O a e

e O a O X e

+

−

− −

− −

+ → +

+ → +
      (4.26) 

The principal species involved in a glow discharge are ground state oxygen, the 

2 ( )O a  singlet delta molecular oxygen state, the 3( )O P  atomic state, and electrons.  The 

kinetic energy of the electrons is determined by the reduced effective electric field.  The 

negative ions are destroyed primarily by ionic recombination (reaction 21):  

e
2 2 ( )Or ckO O O X− ++ →        (4.27) 

This streamlined set of rates is used in conjunction with the power balance 

equation (Equation 4.33) to describe the system, assuming that steady-state has been 

reached: 

[ ]
[ ]2ss

2

 ( )
( ) a ss

ss
a ass

k e O X
O a

k e

−
+

−
−

  =
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      (4.28) 
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k O X k O X k
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k
− − −
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[ ]
( )
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3

eff 2 2

O P (E /N)  O (X) O (a)
2

in ss
L o ass ssss

P A vk e
V V

ε ε−
      = − ∆ + ∆   
   

           (4.33)
 

 
where ( / )L effk E N  is the inelastic reaction rate coefficient and is equal to i i

i
kε∆∑ given 

in units of (eV m3 s-1) where i ranges over the reactions 1-16 and iε∆  is the amount of 

energy required to excite the ith excited state.  Also, ∆εo and ∆εa are the energy required 

to dissociate 2 ( )O X into two ground state O-atoms and the excitation of 2 ( )O X  to the 

2 ( )O a  state (6.0 eV and 0.98 eV, respectively).  The steady-state concentrations of the 

species are [ 2 ( )O a ]ss, [ 2 ( )O X ]ss, [ 3( )O P ]ss, [O− ]ss, and [ e− ]ss.  The aΓ  is the pseudo-

first order decay rate used to compare the analytic expression of the 2 ( )O a  concentration 

to the measured intensities.  aΓ is used in Equation 4.28 instead of guessing at a possible 

dominant destruction method of the 2 ( )O a state.  By fitting the streamlined equation to 

the measured 2 ( )O a  data, as will be shown in section 4.8.1, the behavior of measured 

data will be used to discuss possible destruction methods.  The rate coefficients, ka+ and 

ka-, are production and destruction of the 2 ( )O a  state by electrons.  These rate 
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coefficients are a function of the electron temperature, Te, as defined in Equation 2.8.  Te 

as a function of the reduced effective E-field is determined by solving the Boltzmann 

equation.  In this work, BolSig+27 is used to solve the Boltzmann equation, as discussed 

previously.  All of the Te dependent rate coefficients are determined using the BolSig+ 

package.  Electrons are produced by ionization with a rate coefficient of kion.  Loss 

mechanisms for the electron density are diffusion, with a rate coefficient of kdiff; 

attachment, with a rate coefficient of katt, and electron recombination with a rate 

coefficient of krec.  The plasma is assumed to be quasi-neutral, so the positive ion density 

must be equal to the sum of the negative ion density and electron density.  O-atoms are 

produced by dissociative attachment (reaction 18) and directly by electron impact 

(reactions 14 and 15).  The attachment and dissociation rate coefficients are summed and 

represented by kO+.  At steady-state the negative ions produced by dissociative 

attachment are considered a source of O-atoms.  The destruction of negatively charged 

atomic oxygen is very fast, ~ 10-8 cm-3 s-1, and results in negligibly small populations.  

This assertion will be discussed later in this section.  The dominant loss mechanism for 

O-atoms is recombination at the walls of the flow tube, kwall.  From Gordiets et al., the 

radially averaged rates for wall loss can be expressed as18:  

1
2

12
Wall

th O

r
k s

D v γ

−

−
 Λ

= +  
         (4.34)

 

where Λ is the characteristic diffusion length; D denotes the diffusion coefficient; r is the 

radius of the cylindrical flow tube; vth is the thermal velocity; and γO is the probability of 
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reaction at the wall.  For the pressure range studied,  2 DΛ  < 2 th Or v γ .  This assertion is 

based on the following approximated calculation: 

First, from Perram et al.,72, 73 r φΛ = ,  where r = 0.005 m, and φ is the unitless 

diffusion parameter for a cylinder = (2.4048).2  Therefore, 32.079 10−Λ = × m. 

Also, D is a Fick diffusion coefficient, which, from Yolles et al.,84 is equal to 

52.7 10−×  (m2 s-1) for molecular oxygen and 2 ( )O b  at a pressure of 1 atm and 300 K.  For 

this study the gas in the discharge region is at 1200 K and from Wilke and Lee85 

3 2  gD Tα .  Therefore at 4 Torr and 1,200 K, ( )3 2 5(760 / 4) 1200 300 2.7 10D −= × . Using 

these nominal values, the diffusion-limited portion of the wall rate is  

2 41.06 10D −Λ = × s.  So, for the wall reaction term, 2 th Or v γ , the velocity of the 

particles in the gas is defined as 8 1256th B gv k T mπ= = m/s at a temperature of 

1,200 K.  From Gordiets et al.,18 17800.98 WallT
O eγ −≈ ×   is the probability of O-atoms 

reacting at the wall surface and is equal to 0.01877 at 450 K.  Therefore,  

 
42 2 0.005

4.24 10
1256 0.01877th O

r

v γ
−×

= = ×
×

s.   

So, the statement that 2 DΛ  < 2 th Or v γ is valid.  Therefore, the wall rate may be written 

as: 

r
vk Oth

Wall ×
=

2
γ

         (4.35) 

 The system of steady-state relationships, equations 4.28 to 4.33, is solved using a 

Mathematica code.  The inputs to the Mathematica code are: (1) the rates, as determined 
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by the BolSig+ package; (2) the gas temperature; and (3) the velocity of the gas flow.  

The measured data and simulated results are shown in Figure 4.19.  The [ 2 ( )O a ] comes 

to steady-state in less than 0.5 ms, and the steady-state value is inversely proportional to 

the pressure in the gas flow.   
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Figure 4.19  Analytic model of the yield of O2(a) gives a value for Γa, which, on average, is 6,000 s-1: ○ 
2 Torr, ●  3 Torr,  4 Torr,  5.2 Torr, ▲  7.5 Torr,  and ▬ theoretical fits from Equation 4.28 at 
each pressure. 
 
 

The streamlined set of equations, 4.28 through 4.33, is a small subset of the rate 

packages used by the majority of the groups publishing in the field.7, 17, 74   Note that Ionin 

asserts that a unified set of agreed upon rates is needed in current rate packages.40 

Therefore, the legitimacy of this method will be established by comparison to published 

results.  The two main results used for comparison are those published by Stafford and 
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Kusher4 and Rakimova et al.17  The Stafford7 paper reports the simulated concentrations 

of a capacitively coupled RF discharge sustained in a 3 Torr pure oxygen flow.  The 

length of the discharge region is 20 cm; the diameter of the flow tube is 4.83 cm; the gas 

flow velocity is 1,000 cm/s; and the deposited power is 0.5 W/cm3. 

The results of the streamlined simulation will be compared to the simulated 

results for O-atoms, 2 ( )O a , electron density, electron average energy, and the E/N of the 

system.  The results reported by Rakimova17 are for a capacitively coupled RF discharge 

in pure oxygen of pressures ranging from 2 to 20 Torr.  The length of the discharge is 

approximately 3 cm, the radius of the flow tube is 0.55 cm, the gas flow velocity is 

630 cm/s, and the coupled energy ranges from 0 to 1,200 J/mmol or 0 – 12 eV.   

 In Figure 4.20, the reduced effective electric field, E/N, is plotted versus the flow 

velocity of a gas for a range of pressures.  The E-field is oscillating at a frequency of 

2.45 GHz, and the gas flow is pure oxygen.  For each pressure, the value of E/N changes 

by 25% over the range of flow velocities, while the average value of E/N for the 

pressures changes by a factor of 3.   

Te drives many of the rates included in the model and is determined by the 

average kinetic energy, εavg, of the electrons.  εavg as a function of E/N is an output of the 

BolSig+ code.  If these values match those of other reported works, then the rate package 

included in BolSig+ is adequate, and the E/N values determined within the model are 

representative of the reported work. 
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Figure 4.20   E/N as a function of gas flow velocity for 2.45 GHz discharge study performed in this 
work: ● 2 Torr, ■ 3 Torr, ▲ 4 Torr , ▼ 5.2 Torr,  ♦ 7.5 Torr. 

 

Figure 4.21 shows the average electron energies, εavg, calculated for three 

different discharges.  The simulation presented in this work has been applied to each 

system.  Those results are shown in black.  The values published by Stafford7 and 

Rakimova17 are the open points. 

The comparison to the Stafford model is excellent, with the values differing only 

by 0.05 eV.  The simulated Rakimova energies range from 3.2 to 2.6 eV, and the analytic 

simulation ranges from 3.36 to 3.0 eV.32  Both models predict εavg values, which 

decrease as a function of pressure.  The simulations reported by Rakimova17 and 
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Stafford7 use Boltzmann solvers developed by those research groups, as opposed to the 

BolSig+ package used in this study.   
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Figure 4.21  Simulated results for average electron energy by ○ Rakimova17; ● this work simulation 
of Rakimova conditions;  Stafford7;  this work simulation of  Stafford conditions;  this work 
RF conditions; X this work µ-wave. 
 
 
The less than 10% error in the absolute values of the electron energies is most likely a 

consequence of the different Boltzmann solvers used, as well as the different rate 

packages.  The calculated reduced electric field, E/N, for the work reported by Stafford is 

shown in Figure 4.22.7   
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Figure 4.22  Comparison of steady-state E/N as a function of position.  (▬) this work, (▬) Stafford.7 

 
 
The reduced electric field as a function of position is shown in Figure 4.22 and is 

compared to the reported results of Stafford.7  The spike in Stafford’s E/N is due to his 

simulation’s prediction that the discharge needs a much higher electron density than the 

results determined by the steady-state model.  As a result, Stafford’s model predicts a 

sharp spike in the E/N at the start of the discharge region.  In the streamlined model 

developed for this work, the position, x, within the discharge is not included.  Instead, 

change in distance is modeled by a change in the residence time or gas flow velocity.  

Hence, a small distance is a short residence time or a large velocity.  From Equation 4.33, 

at large velocities, the energy lost to excited species is significant.  Therefore, this term in 
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the power balance equation dominants the values of E/N and therefore the electron 

temperature.  The dominance of the velocity related term explains the change in the 

discharge conditions at high velocities, short dwell times, or small positions within the 

discharge.  By solving the system of equations at steady state the concentrations vary 

smoothly as the velocity changes and therefore there is no spike in the E/N at entrance 

into the discharge.  This simulation is appropriate for this work because the discharge is 

turned on minutes before the measurements are made allowing the discharge to light, 

thereby eliminating any transient energetics which are included within time dependent 

models.     

Figure 4.23 shows the comparison of the simulated concentrations of O-atoms and 

2 ( )O a  (using the Stafford-Kushner model versus the streamlined model), as the gas 

travels through the discharge region (starting at 0 cm and ending at 20 cm).  The 

conditions used in the streamlined model are the same as those simulated by Stafford and 

Kushner.7  The modeled system is an RF discharge operating in pure oxygen. The flow 

tube has a radius of 4.83 cm, the discharge length is 20 cm, the gas flow velocity is 

1,000 cm/s, and the temperature is 400 K, in the discharge.  Note that the radius of the 

flow tube in the Stafford system is 4.83 cm as opposed to the 0.5 cm radii used in this 

work and the Rakimova study.   The large radius increases the value of the volume term 

in Equation 4.33 thereby decreasing the power loading.  Reduced power loading will 

decrease the rate at which species increase.  This explains why the excited specie 

concentrations continue to change in Figures 4.23 and 4.24 while the E/N is constant.    
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Figure 4.23  Comparison of O-atom and O2(a) concentrations as a function of position. (RF discharge, 3 Torr, 
Pin = 0.5 W/cm3, l = 20 cm, r = 4.83 cm, vg = 1000 cm/s.)  (▬) this work O-atoms, (▬) Stafford O-atoms,7 (- -) 
this work O2(a), (- -) Stafford O2(a).7 
 

 
 

 The functional form of the simulations is very similar with a small difference in the rate 

of curvature.  The differences in curvature are related to the destruction and creation 

pathways included in the Stafford-Kushner model which are not included in the 

streamlined model.  The concentrations at the exit of the discharge are within a factor of 

2 making the overall agreement of these models acceptable.  The electron densities 

produced by the two models are also compared.  
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Figure 4.24  Comparison of electron density as a function of position.  (RF discharge, 3 Torr, Pin = 0.5 W/cm3, 
l = 20 cm, r = 4.83 cm, vg = 1000 cm/s.)  (▬) this work, (▬) Stafford.7 
 
 
 
In Figure 4.24, the Stafford results are reported in gray, while the model presented in this 

study is shown in black.  The overall shapes of the two curves are once again very 

similar; the only difference between the two models is the resultant absolute 

concentrations, which differ by only a factor of 3.5 or less.   

 Within this work the steady state value of the electron density is determined using 

Equation 4.29.  Using this equation, electrons are removed from discharge region by 

dissociative attachment, recombination, and diffusion.  If diffusion is the dominant loss 

mechanism of electrons within the plasma, then the EEDF could be affected by electron 

collisions at the wall.  Using Table 2.1at 4 Torr, Tg = 1,185 K, Te = 3.2 eV, and a tube 

radius of 0.5 cm, nominal values for the electron loss reaction rates in Equation 4.29 are: 
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and the loss rates are: 
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where a nominal ground state concentration of 16 34 10  cm−× is used.  The electron 

concentration of 9 35 10  cm−× is used from Rakimova,17 shown in Figure 4.25.   Diffusive 

losses for electrons is kdiff = D/Λ2 (1+40 Te (293/Tg)).  The rate of dissociative attachment 

is an order of magnitude larger than the diffusive losses and therefore the affects of 

electrons colliding at the wall will not significantly affect the EEDF.  In Figure 4.25, 

simulated electron densities for a number of RF discharges are reported as a function of 

pressure.   

The electron number densities simulated by Rakimova decrease as pressure 

decreases, while those calculated in this work increase as pressure is lessened.  There is 

some disagreement in the literature as to the behavior of electron densities as a function 

of pressure. 7, 17, 73, 74  Many studies that report an increase in [ e− ] with increasing 

pressure are performed at a much lower pressure, less then 500 mTorr, and suggest that 

the direct relationship between electron density and pressure stops or is reversed at higher 

pressures.76   The rationale for a decrease in [ e− ] as a function of pressure is straight- 

forward and addressed below. 
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Figure 4.25  Simulated results for [e-] by ○ Rakimova,17● this work (Rakimova conditions),   Stafford,7  this 
work (Stafford conditions). 
 
 
 

4.6.2   Decrease of Electron Number Density as a Function of Pressure  
 

The electron number density, as presented in this work and Rakimova’s work, is 

determined by solving a number of coupled differential equations.  Neither study includes 

a measurement of the electron density.  Both models assume that the plasma fills the 

cross-sectional area of the flow tube in the discharge region.  This assumption ignores the 

tendency of the plasma to concentrate into a toroidal shape, at a higher pressure.  (This 

phenomenon is caused by the reduction in the mean free path of the electrons.)  As such, 

the electron number densities determined by both models are flawed.  It is the intent of 

this section to present material that suggests the feasibility of an inverse relationship 

between electron density and gas pressure in the flow.   
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From Figure 4.26, it is apparent that the ionization rate is strongly dependent on the 

average energy of the electrons.  From Figure 4.21, both models simulating the Rakimova 

geometry show a 10% decrease in εavg with pressure.  From Figure 4.24, the ionization 

rate increases from a value of 10 3 12 10 cm s−×  at 3 eV to 10 3 111 10 cm s−×  at 3.3 eV.  

Dissociative attachment, the dominant loss mechanism for electrons, does not change 

dramatically as will be discussed later in this section.  Therefore, it is expected that the 

electron density will decrease as the pressure of the gas increases.  However, Rakimova’s 

work shows an increase in electron density as the gas pressure increases.  The source of  
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Figure 4.26  Ionization rate, kion, as a function of the electron temperature, as determined using the 
BolSig+ model, for a µ-wave discharge at 4 Torr. 
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electrons at a higher pressure, as reported by Rakimova,17 is a collisional detachment of 

electrons from negative ions.  The O−  population is produced by attachment and 

quenched by collisions with O-atoms, 2 ( )O a , and positive ions.  Therefore, an increase 

in the number of collision partners logically results in an increase in detachment.   

The mechanism for detachment is shown below: 

O M O M e− −+ → + +      (4.36) 

where M represents any collision partner in the gas flow.  From this expression it may be 

surmised that as the gas pressure in the flow is increased, and subsequently the number 

density of collision partners increase, that the electron concentration in the flow will 

increase.  However, to increase [e-], [O− ] must be the same order of magnitude as [e-] at 

lower pressures that will serve as a reservoir of electrons that may be depleted as pressure 

is increased.  Examination of the second order effects of the negative ion density on the 

electron density follows. 

In Figure 4.27, the rate of production of O−  within an RF discharge is shown for 

a range of average electron energies.  The typical εavg for an RF discharge at pressures 

over 1 Torr is approximately 3.2 eV.  From the chart below, the value is approximately 

kattch =  2x10-11 cm3 s-1, assuming an upper limit for E/N as 60 Td or εavg  = 4 eV.  In 

order to examine the upper limit of the negative ion concentration, the higher E/N will be 

used.    
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Figure 4.27  Attachment rate in cm3 s-1 plotted versus average electron energy (eV).  ● µ-wave. ○ RF. 

 
 
The solution to the concentration of O−  within the discharge, assuming quasi-neutral 

discharge at steady-state, having a gas temperature of 1,000 K, is governed by the 

reactions below: 

[ ]
[ ] [ ]

2ss

2 2 ss

 ( )

( )
attch ss

ss
rec aneg Onegssss

k e O X
O

k O k O a k O

−
−

+

    =    + + 
   (4.37) 

11 10 16

8 10 9 15 10 15

3 10 10  10
2.98 10 10  1.2 10 10 8 10 10ss

O
−

−
− − −

   ×      ≈       × + × + ×     
 (4.38) 

15
9

6

4 10 3 10
1.2 10ss

O− ×  ≈ ≈ ×  ×
      (4.39) 



www.manaraa.com

 100 

The approximate value for the [O− ]ss value is roughly an order of magnitude 

smaller than the electron density.  This approximate value was calculated assuming a 

large value for the attachment rate and that both the 2 ( )O a  and O-atom population are 

1%.  With a large εavg, production is at a maximum, and, with small concentrations of O 

and 2 ( )O a , quenching of O−  is small regarding actual plasma conditions.  Even after 

assuming artificially large production terms and small quenching terms, the O−  

population could only reach 10% of the electron density.  If all of the O−  present within 

the discharge is collisionally relaxed, producing free electrons, then the total increase in 

the electron density would be 10%.  As the pressure increases from 2 to 20 Torr, the εavg 

decreases from 3.2 to 2.6 eV, causing a reduction in the ionization rate of greater than 

50%.  Therefore, including the 50% decrease in electron density caused by reduction in 

the rate of ionization and the 10% increase due to increased detachment, the overall 

change to the electron density as pressure increases should be a reduction of 40%.   

 

4.7 O-atoms within the Discharge 
 

One of the major differences in the effluence of a chemically driven SOG and a 

SOG driven by an electric discharge is the production of atomic oxygen.  As shown in 

Figure 2.5, the EEDF within a discharge has a high-energy tail, hence, there are a finite 

number of electrons with enough energy to dissociate an oxygen molecule.  Also, if 

significant percentages of metastable states, such as 2 ( )O a , are maintained in the 

discharge, then these excited states will also be dissociated by electrons with energies less 
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than 6.0 eV,28 which is the energy necessary to dissociate an oxygen molecule.  O-atoms 

are also created by dissociative attachment, reaction 2, which has a threshold energy of 

approximately 3 eV.  O-atoms introduce reaction pathways that do not exist in the 

chemistry based oxygen-iodine laser system and may reduce the 2 ( )O a  population and I* 

concentration.  If O-atoms reach a significant population, they could influence the EEDF 

and change the reaction rates determined by using the BolSig+ code in a pure oxygen gas 

flow.  In order to verify that the O-atom concentration is small enough not to affect the 

EEDF, O-atom concentrations have been measured.  Note that the effect of O-atoms on 

the EEDF has been added to the BolSig+ model, assuming that the O-atom concentration 

makes up less than 10% of the discharge.  (The assumption that O-atom concentration is 

less than 10 % will be validated by actinometry measurements in section 4.7.1.)  This has 

been accomplished by adding O-atom cross-sections, from Laher et al.,84 to the BolSig+ 

library, scaling the cross-sections to reflect that [O] = 10% of [ ]2 ( )O X  and recalculating 

the EEDFs.  The result is that there is less than a 3% change in the production rate of 

2 ( )O a .  Because the error in the determination of yield is approximately 20%, it will be 

assumed that the change in the rate is negligible if the population of O-atoms is less than 

10%.   

Measurement of the O-atom population is accomplished by using the established 

method of actinometry, which was discussed in Section 2.8.  Measured populations for 

this study’s microwave discharge will be discussed in the contexts of existing literature, 

and any ramifications will be examined. 
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4.7.1   Actinometry 
 

From Pagnon,38 the [O] may be determined from the ratio of  I0844nm/IAr750nm  by 

the relationship shown in Section 2.8, Equation 2.30.  The emissions of Io and IAr that 

result from a microwave discharge operating at 85 W, 800 SCCM, and 10% argon in the 

flow are measured and shown in Figures 4.28 and 4.29.  The emission from the argon 

centered at 750.4 nm is the result of the transition, 2P1/2 4p (0.99eV) - 2P1/2 4s (0.87eV).   

The peak centered at 751.5 nm is a result of the transition from 2P3/2 4p (0.97eV) - 

2P3/2 4s (0.85eV).  The measurements in this work show that O-atoms make up less than 

5% of the gas flow in an apparatus with a radius of 0.5 cm for a µ-wave discharge, 

Figure 4.30.  The Rakhimova measure shows that O-atoms make up about 5% of the gas 

flow in a RF discharge.17  The argon emission line is at 750.4 nm, and the atomic oxygen 

line at 844.6 nm are the primary lines used for the actinometry detection method.  Using 

the actinometry technique, the degree of dissociation, as measured by Ivonov,77 is 2%.  

The streamlined model predicts a value of 5% under the Ivonov conditions.  Other 

reported yields of O-atoms are:  Stafford 20%,7 Sharma 0.2%,78 Rakihmova 5%,17 and 5 

± 0.5% in this study.   
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Figure 4.28  Emissions of argon from the electric discharge. 
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Figure 4.29  Emission from O-atoms centered at 844 nm. 
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Figure 4.30  Measured percentage of the gas flow, which is made up of O-atoms within a 2.45 GHz 
discharge at three pressures, 2, 4, and 7 Torr. 
 

 
 
The actinometry measurement agrees with the simulated results, as well as those 

reported in the literature for similar discharge conditions.  As previously mentioned, it 

will be assumed that a yield of O-atoms, less than 10%, will have no effect upon the 

electron energy distribution.  Therefore, the BolSig+ results are accurate for the 

continued simulation of this work. 

 
4.8 Results and Discussion of O2(a) Data 

 The results found from the literature (shown in Figure 2.14) and the 

measurements in this work (shown in Figure 4.18) both exhibit a decrease in the yield of 

2 ( )O a  as pressure increases.  In order to describe the behavior of the reduction of the 
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2 ( )O a  concentration, a pseudo-first order decay rate, Γa, has been introduced to the 

steady-state solution of the 2 ( )O a  excited state.  The behavior of Γa will be used to asses 

a destruction mechanism for the 2 ( )O a  state.   

 
4.8.1 Inclusion of Pseudo-First Order Decay Rate  

 
The concentration of 2 ( )O a as a function of gas pressure and flow velocity has 

been measured by monitoring the optical emissions centered on 1260 nm.   The yields 

calculated from these measurements show an inverse relationship to the oxygen pressure 

within the flow.  The steady state equation used to describe the 2 ( )O a concentration 

within the discharge includes a pseudo-first order decay rate.  Obtaining values of aΓ  

using the steady state equation in combination with the yields of 2 ( )O a , will permit an 

assessment of the destruction mechanisms of 2 ( )O a within the discharge.  Calculation of 

the first-order decay rate for a range of flow velocities and gas pressures follows. 

In Equation 4.28, the steady-state solution of 2 ( )O a  includes a pseudo-first order 

decay rate denoted by the symbol aΓ .  The values of aΓ  are determined by solving the 

steady-state equation for aΓ : 

[ ]
[ ]

2ss

2

 ( )

( )
a ss

a a ss
ss

k e O X
k e

O a

−
+ −

−

    Γ = −       (4.40) 

Note that the fraction [ ] [ ]2 2ss ssO (X)  O (a)  is present in Equation 4.40.  This value is the 

inverse of the yield of 2 ( )O a , aY , which is determined from the measured intensity of the 

2 ( )O a  emissions, Ia: 
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Using equations 4.28 through 4.33, there is a system of six equations with seven 

unknown values, including aΓ  as an unknown.  By including Equation 4.41 as the 

solution for the steady-state value of 2 ( )O a , the system of equations may be used to 

obtain values of aΓ .   
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Figure 4.31   Γa as calculated  for each datum measured with a µ-wave discharge as a function of flow rate for 
the pressures:  ○ 2 Torr, ● 3 Torr,  4 Torr,  5.2 Torr, ▲ 7.5 Torr. 

 
 

Figure 4.31 shows the values of aΓ  determined for pressures ranging from 2 to 

7.5 Torr and mass flow rates varying from 10 to 1,800 SCCM.  By averaging the value of 

aΓ  over the range of flow velocities, an average value of aΓ  is calculated for each 

pressure.  These average values vary with pressure, as shown in Figure 4.32.  The 
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average values of gamma, avg
aΓ , are near 6,000 s-1 for µ-wave discharges, with the 

exception of the values for 2 Torr and 7.5 Torr.    

 
 

Figure 4.32   Average value of Γa as a function of pressure.  ● µ-wave conditions for 2-7.5 Torr,  RF conditions 
(this work), ■ RF conditions (Rakimova),17 and ▼ RF conditions (Stafford).7 

 
 
Figure 4.32 shows that the decay rate for RF discharges is an order of magnitude 

less than those values calculated for microwave discharges.  This relationship is telling 

with regard to any suggested mechanism.  The behavior of aΓ  as a function of flow 

velocity, E-field oscillating frequency, and gas pressure will be used to examine 

candidate kinetic mechanisms responsible for limiting the yield of 2 ( )O a . 

By changing the frequency of the oscillating field from a microwave frequency to 

RF, the average electron energy, εavg, changes by 0.2 eV or less, as shown in Figure 4.21.  
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The small change in εavg has a relatively minor effect upon most of the reaction rate 

coefficients in this energy region, as shown in shaded areas of Figures 2.6 and 2.7.  A 

closer look at the rates important to production and destruction of electrons is shown in 

Figure 4.33.   
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Figure 4.33  Reaction rate coefficients at 3 Torr for ○ dissociative attachment µ-wave, ● dissociative 
attachment RF,  dissociation µ-wave, ▲ dissociation RF,  □ ionization µ-wave, ■ Ionization RF 
(from BolSig+). 
 
 

However, the ionization rate, kion, varies strongly as a function of εavg in this 

energy region.  As shown in Figure 4.33, this rate increases by an order of magnitude or 

greater when changing from RF to µ-wave frequencies.  Because there is an order of 

magnitude difference in aΓ  between the RF and microwave discharges, the mechanism 
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responsible for quenching 2 ( )O a  is probably related to the ionization rate and, most 

likely, the electron density.  In Figure 4.34, the kion at 4 Torr is shown for both RF and 

microwave frequency electric field, as determined by using the BolSig+ code. 
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Figure 4.34  Ionization rate versus average electron energy for ▬ µ-wave frequency and ▬ RF 
discharges at 4 Torr, Tg = 1,100 K (from BolSig+). 
 
 
 

The dimensions of the discharge used to produce Figure 4.34 are a flow tube 

diameter of 1 cm, the length of the discharge region of 3.2 cm, and the average electron 

energy ranges from 2.5 to 3.7 eV, which is the range of εavg studied in this work.  

Figure 4.35 shows the near linear dependence of the pseudo-first order decay rate 

divided by the steady-state concentration of oxygen in the ground state, [ ]2 ( )a SSO XΓ , 
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on the 
ss

e−   .  This argues for a quenching mechanism that is dependent on 
ss

e−    

multiplied by [ ]2 ( ) ssO X .   
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Figure 4.35  Relation of Γa / [O2(X)]ss versus [e-] ss.  ○ 2 Torr,  3 Torr,  4 Torr, ▲ 5 Torr,  7 Torr, ● 
current work RF 2, 4, and 7 Torr, ♦ Stafford RF7, ♦ Rakimova RF. 17 
 
 

The electron densities are determined by using the streamlined computer 

simulation, using equations 4.28 through 4.33.  From the near linear relationship shown 

in Figure 4.35, the dominant mechanism for limiting the [ ]2 ( ) ssO a  must be of the form: 

[ ]2 ( )a a ssss
e O X− Γ = Σ         (4.42) 

where aΣ  is the rate coefficient required for this reaction mechanism.  As governed by 

the power balance equation, Equation 4.33, the 
ss

e−    and [ ]2 ( ) ssO X  are inversely 

related, making their product invariant with residence time.   
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Figure 4.36  The ground state and electron densities are shown in the plot above, including the 
product of the two concentrations as a function of flow velocity at 4 Torr.  ● [O2(X)],▼ [e-], ▲ 
[O2(X)] · [e-]. 
 
 
The relationship between the electron density and ground state density is shown in 

Figure 4.36.  Two key characteristics of the dominant quenching mechanism of 2 ( )O a  

have been identified.  First, [ ]2 ( )a SSO XΓ  is linear with electron concentration, and 

second, aΓ  in an RF field is significantly smaller than in the presence of a microwave 

frequency field.  These characteristics are used to explore possible mechanisms 

responsible for destroying 2 ( )O a .  
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4.8.2   Brief Synopsis of Results  

A systematic study of microwave discharges has been performed through the 

pressure range of 2 to 7.5 Torr in pure oxygen flows.  Both RF and µ-wave frequencies 

have been studied.  Optical spectroscopy has been used to monitor the change in the 

[ ]2 ( )O a , [ ]2 ( )O b , and [ ]O  concentrations as a function of pressure and gas flow 

velocity.  A technique involving spectroscopy, gas flow velocity, and careful analyses of 

the gas temperature has been developed and used to observe the excited species directly 

within the discharge region.  In the literature, experimental measurements of excited 

effluent from discharges are typically performed many centimeters downstream of the 

discharge.  When optical diagnostics are used immediately outside of the discharge or 

within the discharge, the intensity of the emissions is strongly affected by the gas 

temperature.  Because of this dependence, an elegant method has been developed to 

precisely determine the temperature of the gas in the discharge region. 

The gas temperature measurements reported in this work have been extracted 

from the rotational energy distribution of the excited [ ]2 ( )O b state.  The resolution of the 

[ ]2 ( )O b spectral data reported in this study has a resolution of 0.01 nm, while the most 

precise resolutions reported in the literature is 0.04 nm.  Higher resolution spectra allow 

the determination of the gas temperature to a higher degree of precision.  Typical errors 

in reported gas temperatures for this study are 5% or less, whereas errors in gas 

temperature reported in the literature are typically 10% or greater.  Because the gas 

temperature influences the intensity of the emissions from all of the measured species, 

higher precision temperature determination results in higher precision density 
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measurements.  The high-resolution gas temperature measurements performed in this 

study improve the quality of the reported data by approximately 10% throughout this 

work.   

The primary purpose of the gas temperature measurement is to obtain an accurate 

measurement of [ ]2 ( )O a using optical intensities.  An understanding of the gas 

temperature also permits a brief commentary upon thermal transport  within the discharge 

and the affects it has upon EOIL systems.  The steady state temperature, Tss = 1182 ±  10, 

is significantly lower than anticipated if heat transfer to the wall or flow of excited 

species out of the discharge is not considered.  The fit result  f  =  0.17 ± 0.02 implies 

most of the discharge power does not raise the gas temperature.  The analysis presented 

in Appendix B indicates that significant power is transferred to the reactor walls via 

atomic oxygen reactions.  The reactor wall requires active cooling with compressed air to 

prevent glass softening.  Indeed, thermal control and surface reactions appear important 

in most EOIL demonstrations. 

[ ]2 ( )O a  emission intensity measurements made within the discharge region have 

been reported.  Four atomic species present in the electric discharges emit in the same 

spectral region, from 1,250 to 1,300 nm, as the [ ]2 ( )O a  state.  These atomic emissions 

are from high-energy, 13 eV, or ionic O-atoms, which are not observed downstream of 

the discharge but have sufficient concentrations within the discharge region.  By using a 

computer model, the intensity contributions of these emissions are separated from the 

reported [ ]2 ( )O a  emission intensities.  Using the computer model allows [ ]2 ( )O a  

intensity measurements made directly inside the discharge region to reflect the 
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concentration of the [ ]2 ( )O a  state without introducing errors that result from changes in 

the atomic oxygen.  Using the model to reproduce the [ ]2 ( )O a  emissions permitted the 

identification of both the 0-0 and 1-1 vibrationally excited transition of [ ]2 ( )O a .  The 

intensity of the 1-1 transition is sufficient to determine a temperature that agrees well 

with the rotational temperatures reported.  Identification of these emissions within the 

discharge has not been previously reported. 

The interpretation of the measured [ ]2 ( )O a  yield, using a streamlined, nearly 

analytic model, cast new light on the determination of the kinetics within the electric 

discharge.  Over the range of pressures studied, the values of aΓ  are invariant as a 

function of the flow velocity of 800 to 15,000 cm/s.  The quenching rate at µ-wave 

frequency field oscillations ranges from aΓ  = 4,000 to 9,000 s-1, while the values range 

from aΓ  = 400 to 600 s-1 for RF fields.  The only rate that changes significantly between 

the two different field oscillation frequencies is the rate of ionization.   

From the steady-state simulation, it has been determined that the product of 

[ ]2 ( )e O a−  ×   is approximately constant.  As the velocity of the gas is increased, the 

temperature of the gas in the flow decreases.  The concentration of 2 ( )O X  is inversely 

related to the temperature of the gas and, hence, changes dramatically as the residence 

time of the gas is changed.  This requires a subsequent change in the electron density.  

The primary kinetic pathway that changes as the velocity changes is the ionization rate.  

As the concentration of the ground state increases, the ionization rate drops; therefore, the 
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electron density drops, allowing the product of the two species to remain constant over a 

large range of discharge conditions. 
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V Discussion 

Through this comprehensive study of the behavior of excited species within an 

electric discharge of flowing oxygen in both RF and µ-wave frequency E-fields, a few 

truths may be stated.  First, the intensity of the 2 ( )O a emissions, aI , obtains a steady-

state value after residing within the discharge region for approximately 0.3 ms. This 

residence time corresponds to 3 eV/ particle, consistent with the observations of 

Rakhimova.17  The modeled results of Stafford and Kushner7 suggest that the 

2 ( )O a concentration peaks at 6 eV/ particle and is limited by the dissociation of the 

ground state oxygen.  When O-atom concentrations make up more than half the flow and 

the ground state concentrations diminish, then the production of 2 ( )O a by Reaction 10 of 

Table 2.1 is reduced.  However, the measured results of 2 ( )O a  in this study and 

Rakhimova’s study7 reach a steady value at a lower energy deposition than predictions,17 

suggesting there is a mechanism for quenching 2 ( )O a  that is not currently included in 

simulations.  This destruction pathway will limit power scaling in EOIL systems, 

because, when increasing deposited energy, higher yields of 2 ( )O a  will not be 

obtainable, presumably because the quenching species will also be created at a higher 

concentration.   

 Secondly, it is observed in a large number of different studies that the yield of 

2 ( )O a , aY , decreases as the pressure of oxygen is increased within the discharge.  

However, high yields of 2 ( )O a  have been achieved at high total gas pressures when the 

partial pressure of oxygen was small.  This result further identifies the destruction 
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mechanism as being tied to the existence of oxygen within the gas flow.  Hence, the 

destruction mechanism is not related to collisions with the carrier gas, argon, or an 

excited species of argon.   

 A steady-state description of the 2 ( )O a  concentration has been used to further 

describe the behavior of the destruction term of 2 ( )O a , which is seen in Equation 4.28.  

The resulting values of the quenching term, aΓ , do not change significantly over the 

pressure range, 2 to 10 Torr, and residence time, 0 to 3 ms.  Therefore, whatever 

mechanism results in the destruction of the 2 ( )O a  within the discharge must also remain 

unaffected by changes in the gas pressure and flow velocity of the gas.  The magnitude of 

aΓ  for the µ-wave case is 6,000 s-1.  Because aΓ  must be the product of a rate coefficient 

and the concentration of the quenching species, the magnitude of aΓ  restricts reactions 

that may be responsible for the observed behavior of 2 ( )O a .  For instance, a species that 

makes up 10% of the gas flow at 2 Torr and a steady state gas temperature of 1200 K has 

a concentration of approximately 1 x 1016 cm-3.  In order for the product of the 

destructive species and the reaction rate coefficient to equal 6,000 s-1, the rate coefficient 

of this reaction must be 6 x 10-13 cm3 s-1.  Furthermore, the aΓ  values derived from the 

RF measurements are 500 s-1.  In summation, the quenching mechanism must be 

invariant to changes in pressure and flow velocity, while changing by an order of 

magnitude when the frequency of the E-field is changed from 2.45 GHz to 13.56 MHz.   

 The criteria for the quenching mechanism of 2 ( )O a  is very specific, many species 

commonly thought to limit the production of 2 ( )O a  within the discharge do not meet 
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these criteria.  There is one relationship that does meet the criteria.  [ ]2 ( )e O X−  ×   is 

invariant with respect to gas pressure and flow velocity.  Also, the ionization rate changes 

by an order of magnitude between RF and µ-wave frequencies.  Furthermore, the 

reactions responsible for reducing the electron density, namely, recombination, diffusion, 

and dissociative attachment, do not change significantly when the frequency of the E-

field changes.  Note that the dominant loss mechanism of electrons is dissociative 

attachment.  Dissociative attachment has a rate that is an order of magnitude larger than 

diffusive losses under the conditions studied in this work.  Under these conditions the 

electron densities will not be affected by interactions at the wall.  Because the electron 

production rate decreases by an order of magnitude and the loss rates do not, it is 

reasonable to expect the electron density to decrease by an order of magnitude when the 

frequency of the E-field changes.  So, if the concentration of the excited species, [M],  

responsible for quenching 2 ( )O a , is dependent on the product of [ ]2 ( )e O X−  ×  , then it 

should be invariant with pressure and gas flow velocity, making it a prime suspect for 

quenching 2 ( )O a , providing the reaction rate and concentration are large enough. 

5.1 Evaluation of O2(a 1∆) Destruction Mechanisms  
 

In Table 5.1, six candidate reactions are listed that may be the dominant 

destruction pathway of the 2 ( )O a  state.  Reactions 22-25 are mentioned by Stafford as 

possible dominant quenching reactions.  Reaction 26 is deactivation by direct electron 

impact, which is included for completeness.  The final reaction (reaction 27) is a new 

candidate for quenching of 2 ( )O a  introduced in this work. 
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Table 5.1  Possible quenching reactions responsible for limiting aY . 
Reaction 
Number 

 
Reaction 

Reaction Rate 
Coefficient 

cm3 s-1 

Ref 

22 2 2 2[ ( )] [ ( )] 2[ ( )]O a O X O X+ →  200
18

2 3.0 10 gT
O xk e

−
−= ×  

29 

23 3
2 2[ ( )] [ ( )] [ ( )]O P O a O O X+ → +  162.0 10aOk −= ×  30 

24 3 3
2 2[ ( )] [ ( )] [ ( )] [ ( )] 2O P O X O a O P+ + → +

 

32
3 1.0 10bodyk −= ×  

cm6 s-1 
17 

25 3 2 3 2[ ] [ ( )] [ ] [ ( )]O O a O O X+ → +  2840
11

3 2.0 10 Tg
aOk e

−
−= ×  

29 

26 
2[ ] [ ( )] [ ]e O a e All− −+ → +

 

10( ) 10ae avgk f ε −≈ ×  

 

Scaled 

27 2 2 2 2[ ( )] [ ( )] [ ( )] [ ( )]O v O a O b O X+ → +  104 10vk −≈ ×  This Work 

 
 

Table 5.2  Concentrations for relevant species determined by streamlined code. 
Major 

Species 
µ-wave (cm-3) 

@ 2 - 7.5 Torr, and  20 (cm s-1) 

RF (cm-3) 
@ 4 Torr and 20 (cm s-1) 

[O2(X)] 16 161.1 10 5.8 10× − ×  164.6 10×  

[O2(a)] 15 141.6 10 7.5 10× − ×  155.4 10×  

[O(3P)] 16 151.3 10 3.1 10× − ×  151.8 10×  

[O3] 121 10×  121 10×  

[e-] 12 112.4 10 2.1 10× − ×  111.2 10×  

[O2(ν)] 142 10×

 

134.6 10×  

 

 

 
Table 5.3  Destruction rates for relevant reactions determined by streamlined code. 

Reaction 
Number 

Collision 
Partner 

Expected  Γa s-1 
RF 

Expected  Γa s-

1 
µ-wave 

22 O2(X) 0.1 0.1 
23 O-atoms 0.16 – 0. 54 1.6 – 2.6 
24 O(3P) + O2(X) 1.6 - 5.4 16 - 26 
25 O3 ~3 ~30 
26 e- 0.7 - 2 4 - 25 
27 O2(v) 100 - 700 1000 - 9000 
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The experimental data argue for a quenching term that has a value of ~ 36 10×  s-1 

for µ-wave conditions and a value of ~ 23 10×  s-1 for RF conditions.  The difference 

between the RF and µ-wave cases involves different gas temperatures, Tg; electron 

temperatures, Te; and the expected concentration of the quenching species.  The expected 

values of quenching rates for the reactions in Table 5.1 are reported for both µ-wave and 

RF conditions in Table 5.2. 

Table 5.1 includes approximate values for reactions 22-27, which all destroy the 

[ ]2 ( )O a  state.  The values shown in Table 5.2 are approximated for a typical 4 Torr 

discharge, where the gas temperature is 1,000 K, flow velocity is 20 cm/s, and the flow 

tube diameter is 1 cm.  From Table 5.1, reaction rates 22-26 are too slow by at least an 

order of magnitude to explain the observed yields of 2 ( )O a .  A more in-depth discussion 

of each reaction follows. 

 
5.1.1 O2(X) Collisionally Quenching O2(a, 1∆) 

The collision partner with the highest concentration is ground state oxygen.  If 

collision relaxation of O2(a) with O2(X) (reaction 22) is the dominant quenching 

mechanism of the O2(a) concentration, then the decay rate would have the form:   

[ ]
2 2 ( )a O xk O XΓ =        (5.1) 

The reaction rate 
2O xk ,  shown in Table 4.1 and quoted from Atkinson,29 has a value of 

183 10−× cm3 s-1 or less for all gas temperatures.  As shown in Table 4.2, combining this 

with the average value for [O2(X)], approximately 1017 cm-3, it is calculated that the 

value of aΓ  for this reaction would be approximately 0.1 s-1.  This value is much too 
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small to explain the large amount of quenching observed in this study.  Furthermore, the 

amount of 2 ( )O X  in the gas flow does not change significantly from the RF case to the 

µ-wave case.  Therefore, this reaction does not explain the difference in the decay rate, 

aΓ , between the RF and µ-wave discharges.  Ground state molecular oxygen does not 

strongly quench the 2 ( )O a  state and does not exhibit the needed behavior as a function of 

discharge frequency.  Because there is not a significant change in the destruction rate 

between the µ-wave and RF case using this mechanism, this reaction cannot be the 

dominant reaction limiting the concentration of 2 ( )O a  within electric discharges.   

 
5.1.2 O-atom Collisionally Quenching O2(a, 1∆) 

 The possibility that O-atoms are responsible for limiting 2 ( )O a  is feasible for a 

number of reasons.  O-atoms are not created in a conventional COIL SOG; they are 

resistant to recombination; they are predicted to make up at least 10% of the gas flow in 

the discharge;7, 17 and they look to have the correct functional dependence on the electron 

and ground state concentrations, as shown in Equation 4.31:   

[ ]23 [ ] ( )
( ) O

Wall

k e O X
O P

k

−
+  =       (5.2) 

The rate for O-atom collisionally quenching the 2 ( )O a  state (reaction 23) is reported in 

Table 4.1 and is:    

16 3 -12.0 10  cm  saOk −= ×      (5.3) 

In order for this reaction to obtain a value of  Γa of approximately 1,000 s-1, the 

concentration of O-atoms must be on the order of 1020 cm-3.  Because there are only 1017 
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cm-3 oxygen molecules in the gas flow, this explanation is impossible at the pressures 

studied in this work.  Although O-atoms meet many of the criteria for being the dominant 

quenching mechanism within the electric discharges, the rate of the reaction is not fast 

enough to describe the data.   

5.1.3 O3 Collisionally Destroying O2(a 1∆) 

Ozone is a very reactive species that is generated within the discharge and is not 

present in conventional COIL systems.  Because ozone reacts so quickly, small amounts 

of it within the gas flow may have significant effects on the makeup of the gas.  It is also 

this reactivity that limits ozone to making up approximately 0.001% of the gas flow.  The 

mechanisms likely to dominate the production of ozone within the discharge are shown 

below: 

 

1-312
3223

1-310
32

-1635
332

s cm 100.3              )]([2)]([][

s cm 100.3                   ][][)]([][

s cm 100.2         ][][][)]([][

3

3

−

−
−

−−

−
+

×=+ →+

×=+ →+

×=+ →++
−

+

aO
k

aO
k

O
k

kOXOaOO

keOaOO

kMOMXOO

aO

aO

O

 (5.4) 

 
Ozone is offered as the mechanism responsible for the limitation of [ ]2 ( )O a  within the 

electric discharge studied by Stafford.7  According to Stafford: 

 

( )
12 -3

3

12 12 -1
3 3

[ ] 10  cm

[ ] 10 3.0 10 3.0O a

O

O k s−

≈

≈ × =
      (5.5) 

 
Using the ozone concentrations reported by Stafford7 of 1012 cm-3 and then using the rate 

of kO3a provided by Stafford,7  the value of aΓ  would be approximately 3 s-1.  By using 

the Stafford model, it has been predicted that up to 30% yields are achievable using an 
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RF discharge.7  However, the measured yields reported by Rakimova,17 as well as this 

work, are less than 10% yields.  It would appear that the Stafford model does not 

compare well to measured yields.  Therefore, it is likely that another mechanism besides 

quenching by ozone is responsible for limiting aY  in the experimental apparatus.   

The production pathway of ozone is rich.  So, making a definitive statement 

concerning the pressure dependence of ozone is very complicated.  Therefore, 

eliminating ozone as a possible candidate for the quenching mechanism based on 

pressure dependence, changes with flow velocity, or dependence on gas temperature is 

not possible.   

The production term of ozone is dependent on O-atom concentration, so it is 

expected that, as electron density increases and, subsequently, the O-atom population 

increases, ozone population should increase.  Therefore, an ozone-dependent decay term, 

aΓ , is expected to scale properly as the discharge is changed from RF to µ-wave.  It is 

unlikely that a large enough quantity of ozone is realized within the gas flow in order for 

it to dominate the quenching of 2 ( )O a  within the discharge.   

5.1.4 O(1D) as Destruction Mechanism O2(a 1∆) 

 The 1( )O D  state, like ozone, is a very reactive species that does not occur in a 

conventional COIL system but is produced in significant quantities within an electric 

discharge sustained in oxygen gas.  Also, like ozone, the fast reaction rates of this excited 

state of atomic oxygen with both the wall and other species within the discharge keep its 

concentration small.  The role played by 1( )O D  is contentious within the literature.  
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Despite the uncertainty in the kinetics mechanism, the following discussion assesses the 

potential for 1( )O D as a dominant 2 ( )O a  deactivation partner. 

In the literature, Kushner’s research groups refer to 1( )O D  as a source of 

2 ( )O a .79  Kushner’s model does not include a reaction between 2 ( )O a and 1( )O D , 

which quenches or pools the 2 ( )O a state.  However, the research group that includes 

Ionin74  is currently using the reaction rate given below: 

[ ] [ ]1 3
2 2( ) ( ) ( ) ( )O a O D O X O P   + → +    , 11 3 1

1 1 10a Dk cm s− − −
− = ×   (5.6) 

This reaction rate is quoted from the paper by Doroshenko et al.80  However, this reaction 

rate is not used by Stafford,7 Rakimova,17 Hicks,57 or Hill.55  Hence, for the remainder of 

this analysis, it will be assumed that this reaction may be neglected. 

The approximate concentration of 1( )O D  is calculated assuming that the source 

of 1( )O D  is direct electron impact with ground state oxygen (reaction 14) and is 

destroyed collisionally by O-atoms (reaction 30): 

3 1 3 3( ) ( ) ( ) ( )O P O D O P O P       + → +        , 12 3 1
1 8.0 10O Dk cm s− − −= ×  (5.7) 

Therefore, the change to the concentration of 3( )O P  as a function of time is 

described by the differential equation:  

( ) ( ) ( )
1

3 1 1
1 2 1 21 2

( )
[ ][ ( )] [ ( )]d O d o d

d O D
k e O X k O P O D k O X O D

dt
+

        = − −      . 

          (5.8) 

Assuming steady-state and values for the rates and electron concentration, from a 4 Torr 

gas flow at 20 cm/s, the concentration of 1( )O D  is approximately: 
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( ) ( ) ( )
( )

11 12
1 2 11 13 3

11
21 2 21

7 10 2.3 10[ ][ ( )] [ ]
1.2 10

[ ( )] 2.6 10
d d

SS
o d o d

k e O X k e
O D cm

k O X k

−
+ + −

−

× ×
  = = = = ×  ×

. 

          (5.9) 

The calculation of the source terms for 1∆ and 1Σ (reactions 32 and 31) are shown 

below:     

[ ] [ ]1 3
2 2( ) ( ) ( ) ( )O X O D O a O P   + → +    , 6712 3 1

1 1.6 10 gT
a Dk e cm s−− − −= ×  (5.10) 

[ ] [ ]1 3
2 2( ) ( ) ( ) ( )O X O D O b O P   + → +    ,  6711 3 1

1 2.56 10 gT
b Dk e cm s−− − −= × (5.11) 

using this steady-state value for [ 1( )O D ].  The resultant aΓ  is calculated with the 

reaction for 1( )O D  as a source of 2 ( )O a subtracted from the quenching reaction.   

So, [O(1D) ]ss = 1.2 x 1019, k = (1 X 10-17 - 1.5 x 10-18 )  =  8.5 x 10-18, which implies that 

Γa = 102. 

This value for gamma is an order of magnitude that is too small.  Furthermore, the 

functional form of the 1( )O D  steady-state concentration is also linearly dependent on the 

electron density: 

( ) 1 2 11

21 2 21

[ ][ ( )] [ ]

[ ( )]
d d

o d o d

k e O X k e
O D

k O X k
+ +  = =     (5.12) 

Hence, this mechanism for gamma will linearly depend on the gas pressure.  Because the 

product of the reaction rate and steady-state concentration are not sufficient enough to 

obtain a aΓ  of 1,000, and because this reaction would yield a gamma that depends on the 

gas pressure, 1( )O D is not the primary quenching mechanism for 2 ( )O a .  It should be 

noted that the wall rate for relaxation of 1( )O D  is approximately 1 x 105 s-1.  If the 
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quenching of 1( )O D  is dominated by the wall and not the reaction with the ground state, 

then the concentration of this reactant would be independent of the background gas 

concentration, thereby meeting this observed criteria for the quenching mechanism of 

2 ( )O a .  However, the reaction rates in Equations 5.10 and 5.11 are well known and when 

combined with the a nominal value of the ground state concentration of ~1016 cm-3 result 

in a destruction rate of ~105 s-1.  A nominal wall rate is on the order of 103 s-1 which is 

two orders of magnitude smaller than the collisional destruction rate of 1( )O D .  Thus the 

dominant destruction method of 1( )O D  is by collisions with ground state and therefore 

will be dependent upon the electron concentration as shown in Equation 5.12.  Hence the 

destruction of 2 ( )O a by collision with 1( )O D does not fit the measured data. 

5.1.5 Removing Power Loading Effects 

 Because of the different plasma geometries and production methods studied 

herein, the power loading of the plasmas varies between the different measurements.  In 

order to remove any power loading effects from the results in Figure 5.1, aΓ  is divided 

by the power loading term, which is the left-hand side of Equation 4.33.  At sufficiently 

slow flow velocities, Equation 4.33 may be written as: 

 [ ]2 ( ) in
L ssss

P
k e O X

V
−  ≈           (5.13) 

This expression for power loading is used in Figure 5.1 to put the decay rates determined 

from Stafford,7 Rakimova,17 and this work on the same footing.  In Figure 5.1, it is 

observed that all the values of aΓ  appear to fall on a single line once power loading is 
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removed from their values.  Figure 5.1 also shows the expected functional forms of 

reactions 24, 26, and 27.  A discussion of these three reactions follows.   
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Figure 5.1  Relation of  Γa / [O2(X)] versus [O2(X)].  ○ 2 Torr,  3 Torr, ● 4 Torr, ■ 5 Torr, ▼ 7 Torr,  
current work RF 4 Torr, ● Stafford RF7,  Rakimova RF17.  Expected Γa for ▬ O2(v) Reaction 27, ▬ electrons 
Reaction 26, and – three-body Reaction 24. 
 
 
 
 
 
 

5.1.5.1 e- as the Dominate Destruction Mechanism of O2(a 1∆) 

The rates of electrons reacting with the 2 ( )O a  state, such as reaction 26, are not 

studied exhaustively in the literature.  Therefore, values for these reactions are scaled 
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from the values of the electron interactions with the ground state.7  In this study, the 

absolute value of this rate will not be important to the conclusions.  The absolute value 

will be assumed to be of the same order of magnitude as other reaction rates within the 

plasma, and its trend as a function of pressure, gas flow velocity, and E-field frequency 

will be used as determining factors for the conclusion of this paper.   

As seen in Figure 5.1, the electron-dependent, power loading corrected, pseudo-

first order decay term, shown in gray, decreases as the ground state concentration is 

increased.  This does not match the measured results, which are not dependent on the 

ground state concentration.  Therefore, this quenching mechanism may be eliminated 

from consideration based on the trend of this line, as well as having too small of an 

absolute value, as reported in Table 5.2. 

 
5.1.5.2 Three-Body Recombination 

 
The three-body reaction is included in the results of Rakimova17 and is highly 

defended as the current solution to resolving the difference between current models and 

measurements.74  The rate of this reaction is not well understood and has been determined 

on the basis of matching simulated [ ]2 ( )O a  to experimentally measured [ ]2 ( )O a .  The 

reported value for the three-body reaction is on the order of 10-32 cm6 s-1.  Using this 

value for the three-body reaction at a gas pressure of 4 Torr, and assuming that O-atoms 

make up approximately 10% of the gas flow, the following value of aΓ  is obtained: 

1-632
3

222

s cm 100.3 

 )]([2][)]([)]([][ 3

−×=

+ →++

Body

k

k

XOOXOaOO Body

    (5.14) 
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( ) ( ) ( )

-1
3 3 2

32 16 17 -1
3

[ ][ ( )] s

3.0 10  1.0 10  1.0 10 10 s
Body Body

Body

k O O X
−

Γ =

Γ ≈ × × × ≈
   (5.15) 

 
The work reported by Rakimova is based on the results of an RF discharge.17  Therefore, 

the expected value of gamma is approximately 100 s-1.  The rate of the reaction, shown in 

Equation 5.15, is dependent on the O-atom concentration.  As shown in  

Equation 4.31, O-atoms scale directly with electron density; therefore, this reaction will 

scale by an order of magnitude when changing from µ-wave to RF discharges.  The 

scaling by an order of magnitude from µ-wave to RF discharges makes the three-body 

reaction rate a prime candidate for explaining the observed behavior of aY .  Not only is 

the reaction rate too small; this mechanism is not independent of the ground state 

concentration, as shown in Figure 5.1.  The power loading corrected value of aΓ  for the 

three-body reaction is shown as a dashed black line in Figure 5.1.  This term predicts 

correct values at higher pressures, but it diverges from the required values at lower 

pressures.  Therefore, another mechanism is sought after to describe the measured data. 

 
5.1.5.3 Vibrationally Excited Oxygen  

 
Vibrationally excited molecular oxygen is produced within electric discharges by 

direct electron impact, as seen in Table 2.1, reactions 3-9:  

          [ ] [ ( )] [ ] [ ( )]2 2
kve O X e O v− −+ → +       (5.16) 

The sum of reaction rates 3-9, as determined for a 4 Torr microwave discharge, using the  
 
BolSig+ code, is: 
 

          10 3 14 10k cm sv
− −≈ ×   (5.17) 
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The vibrationally excited states of oxygen are quenched by both atomic oxygen and 

ground state oxygen at the rate of 1.4 x 10-14 cm3 s-1, as reported by Atkinson.29  The rate 

of destruction of vibrationally excited oxygen via these methods is approximately: 

 
          ( ) ( ) ( )14 17 3 1( ) 1.4 10 1 10 2.8 102k O X sv

− − × = × × = ×−      (5.18) 

 
The reaction of vibrationally excited oxygen at the wall is fast.  The wall rate is 

calculated using the same form as discussed in Section 4.6.1, Equation 4.31: 

 
0

2
thv

kWall r

γ
=          (5.19) 

 

For vibrationally excited oxygen, 0 0.2γ = , as reported by Stafford.7  Therefore, the 

expected rate of 2 ( )O v  destruction at the wall is 24,000 s-1.  Destruction at the wall is 

larger than destruction by O-atoms and molecular oxygen by an order of magnitude.   

 Using the production rate by direct electron impact and destruction at the wall, the 

expected steady-state value of vibrationally excited molecular oxygen is: 

 
( )1 2( )2

ss ss

ss

k e O XvO v
kWall

−    −    =        (5.20) 

 
Using average values for a microwave discharge at 4 Torr, 
 

( ) ( ) ( )10 11 16
14 3

4

4 10 3 10 4 10
( ) 2 102 2.4 10ss

O v cm
−

−
× × ×

  = = ×  ×
   (5.21) 
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If aΓ  is determined by reaction 27, then aΓ  would have the form: 

[ ]2 ( )a vak O vΓ =         (5.22) 

Because [O2(v)]ss is expected to have the value of 2 x 1014 cm-3, for Γa to have a value of 

6,000 s-1 for a microwave discharge, the value of kva must be 3 x 10-11 cm3 s-1.  The 

required value of kva is within the limits of the gas kinetic rate.  However, this reaction 

rate is five orders of magnitude faster than quenching by atomic oxygen (reaction 46) 

and, therefore, not likely.  But, if this quenching rate was believable, then the 

concentration of vibrationally excited oxygen does fit the other required conditions 

mentioned in this study.    

 If it is assumed that all excited species within the discharge eventually relax back 

to the ground state and that, while relaxing to the ground state, these species populate a 

vibrationally excited state, then there could be significant secondary sources of O2(v).  If 

it could be presumed that the [O2(v)]ss could obtain a value approaching 10% of the gas 

flow, then the reaction rate would be sufficiently large enough to explain the values of  

Γa at 5 x 10-12 cm3 s-1.  While this rate is still faster than most reactions between two 

neutrally charged species, it is on the same order of magnitude as ozone reactions.  

 Vibrationally excited oxygen is a plausible candidate for quenching the 2 ( )O a   in 

the EOIL system.  The 2 ( )O v  state is well populated in the EOIL SOG and does not exist 

in the COIL SOG.  It trends correctly with the change in the SCCM in the measured data.  

Most importantly, because of the dependence on the electron concentration, as shown in 

Equation 4.42, this reaction explains the large difference in gamma between the RF and 

µ-wave E-fields.   
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5.2 Dominant Destruction Pathway 

The concentration of singlet delta oxygen in microwave discharges of pure 

oxygen reaches a steady value within a 1 ms discharge residence time, independent of 

discharge pressure.  Also, the corresponding yields decrease inversely with pressure.  A 

steady-state analysis of the kinetics is adequate to explain the observations, assuming 

only electron excitation of 2 ( )O a , the inverse super-elastic process, and an unspecified 

third channel for 2 ( )O a  destruction.  The pseudo-first order decay rate for the 

unspecified process is about 6,000 s-1 in the microwave discharge, independent of 

pressure and flow rate.  The same rate in the RF discharge is much slower, 300 to 500 s-1. 

Modeled electron number density is also considerably less in the RF discharge.  As a 

whole, the results suggest a 2 ( )O a  removal process that is:  (1) rapid compared to the 

super-elastic rate; (2) induced by a species generated by electron kinetics; and (3) a 

second order reaction. 

A steady-state analysis has been presented of many species potentially responsible 

for the destruction of 2 ( )O a  within the discharge.  It has been argued that the collision 

partner must be dependent on the product of the electron and oxygen ground state 

concentrations.  A brief look at the steady-state concentrations of likely collision partners 

is shown below: 

 

( ) 1 2 11

21 2 21

[ ][ ( )] [ ]

[ ( )]
d d

o d o d

k e O X k e
O D

k O X k

−
+ +  = =   
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[ ]23 [ ] ( )
( ) O

Wall

k e O X
O P

k

−
+  =        

( )1 2( )2
ss ss

ss

k e O XvO v
kWall

−    −    = 
     

 

All of the steady-state concentrations are directly related to the electron density and, 

therefore, are expected to exhibit the order of magnitude change as the E-field frequency 

is changed.  However, many collision partners, such as 1( )O D , are not directly 

dependent upon the product, [ ]2 ( )e O X−  ×  , and, therefore, would not exhibit the flat 

response as a function of gas pressure and flow rate.  In these steady-state 

representations, it may be seen that both the 3( )O P  and 2 ( )O v  states have the correct 

dependence.   

Even though O-atoms have the correct behavior versus E-field, pressure, and flow 

velocity, the expected value of aΓ  is not sufficient enough to explain the behavior of 

2 ( )O a .  As seen in Table 5.3, the expected aΓ  for the O-atoms is two orders of 

magnitude too small.  The reaction rate between O and 2 ( )O a  is well known; so, it is 

highly unlikely that quenching of 2 ( )O a  by O-atoms is responsible for limiting the 

population within the discharge.  However, other excited species that are dependent on 

O-atoms but have much faster reaction rates with 2 ( )O a  could maintain the correct 

independence of pressure and flow rate and provide plausible reaction pathways for the 

destruction of 2 ( )O a .   
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The reaction rates governing the behavior of 2 ( )O v  are not as well understood as 

those for O-atoms.  The source terms for 2 ( )O v  within the discharge are not well 

determined.  Direct electron impact with 2 ( )O X  creating 2 ( )O v  is included within the 

BolSig+ package; however, there are many different pathways in which 2 ( )O v  could be 

created within the discharge.  O-atoms recombining at the wall of the flow tube could 

return to the gas flow in the form of 2 ( )O v .  Any excited molecular species, 2 ( )O b  or 

2 ( )O A , that is collisionally quenched within the discharge could also form 2 ( )O v while 

losing its energy and relaxing back to the ground state.  O3 and higher energy atomic 

oxygen species could also contribute.  If these pathways contribute significantly to the 

concentration of 2 ( )O v within the discharge, then the proposed reaction rate would not 

need to be so large, making this destruction mechanism more palatable.   
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VI Conclusions 

 
The directed energy community has been pursuing a laser-based weapon system 

since the lasing concept was first demonstrated.  After the Airborne Laser Lab (ALL) 

successfully destroyed multiple airborne targets in 1983, the concept of an ABL weapon 

appeared to be on the horizon.  The current ABL system employs a COIL that suffers 

from an extensive logistics trail.  Using an EOIL eliminates the logistical limitations.  

Existing EOIL systems have achieved laser powers of 102 W, but scaling to kilowatts 

seems to be limited by the pressure dependence of the 2 ( )O a  yield.  Determining the 

chemical kinetics responsible for limiting the yield is paramount to finding a means to 

increase the yield as a function of pressure or determine a different means to scale laser 

power. 

A systematic study of microwave discharges has been performed through the 

pressure range of 2 to 10 Torr in pure oxygen flows.  Gas temperatures of 300 to 1,200 K 

have been determined to a higher resolution than previously reported in the literature, 

subsequently increasing the accuracy of the reported concentrations, by 10%.  A 

theoretical description of the gas temperature allows the determination of the fraction of 

discharge energy coupled into gas heating (15 to 30%).  The simulation of 2 ( )O a  

molecular emissions and O-atom species, which emit in the same spectral region, allows 

concentration measurements to be made directly inside the discharge region.  From the 

measured changes in 2 ( )O a  concentrations, a pseudo-first order decay rate has been 

determined.  The change in the decay rate as a function of gas flow velocity, gas pressure, 
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and electric field frequency has determined that a second order term directly related to 

electron concentration is responsible for quenching the 2 ( )O a  state.  Many reaction 

pathways are considered; however, no clear quenching mechanism sufficiently describes 

the observations.   

The gas temperature measurements reported in this work have been extracted 

from the rotational energy distribution of the excited 2 ( )O b  state.  The resolution of the 

2 ( )O b  spectral data reported in this study is 0.01 nm, while the most precise resolution 

reported in literature is 0.04 nm.  Higher resolution spectra allow the determination of the 

gas temperature to a higher degree of precision.  Typical errors in reported gas 

temperatures for this study are 5% or less, whereas errors in gas temperature reported in 

the literature are typically 10% or greater.  Because the gas temperature influences the 

intensity of the emissions from all of the measured species, higher precision temperature 

determination results in higher precision density measurements.  The high-resolution gas 

temperature measurements performed in this study improve the quality of the reported 

data throughout this work by approximately 10%.   

This study also includes a theoretical description of the gas heating used to extract 

the fraction of discharge power coupled into gas heating.  Using the presented method to 

determine fractional power coupled to heating was applied not only to the measurements 

made by this group but also those reported by UIUC.5  The importance of these results is 

related to the efficiency of a proposed weapon system using an electrically driven SOG.  

The 17% of discharge power that is coupled into gas heating will not be available to 

pumping energy useful to the laser weapon system.  From the calculations in Appendix 
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B, in a typical microwave discharge at 2 Torr of oxygen, 66% of the power is removed 

from the discharge by atomic oxygen,   and only 1% of the power is removed by the 

2 ( )O a  excited state of oxygen.  This effect may ultimately limit the usefulness of an 

EOIL system for weapons applications.   

Measured emissions intensity of 2 ( )O a  are also affected by variations in the gas 

temperature.  An increase in the gas temperature decreases the emitting species 

concentration.  If the effect of gas temperature is not included in the analysis of these 

emissions, then one cannot determine whether the change in concentration was caused by 

chemical kinetics.   

2 ( )O a  emission intensity measurements made within the discharge region have 

been reported.  Four atomic species present in the electric discharges emit in the same 

spectral region, from 1,250 to 1,300 nm, as the 2 ( )O a  state.  These atomic emissions are 

from high-energy or ionic O-atoms, which are not observed downstream of the discharge 

but have sufficient concentrations within the discharge region.  By using a computer 

model, the intensity contributions of these emissions are separated from the reported 

2 ( )O a  emission intensities.  Using the computer model allows 2 ( )O a  intensity 

measurements made directly inside the discharge region to reflect the concentration of the 

2 ( )O a  state without introducing errors that result from changes in the atomic oxygen.  

Other studies in the literature report yields above 30% but laser powers of µ-watts.  This 

may be the result of extracting 2 ( )O a  concentrations from spectral emissions, including 

emissions from O-atoms.  Identification of these emissions within the discharge has not 

been previously reported. 
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 The interpretation of the measured 2 ( )O a  yield, using a streamlined, nearly 

analytic model, cast new light on the determination of the kinetics within the electric 

discharge.  The quenching rate at µ-wave frequency field oscillations ranges from 

Γa = 4,000 to 9,000 s-1, while the values range from Γa = 400 to 600 s-1 for RF fields.  

The only rate that changes significantly between the two different field oscillation 

frequencies is the rate of ionization.  This result leads directly to the determination that 

the 2 ( )O a  quenching mechanism must be related to the ionization rate.  It is a small step 

from this result to the assertion that electron number density must be important to the 

quenching term.   

Quenching of the 2 ( )O a  state by direct impact with electrons does not explain the 

acquired data.  As shown in Table 4.2, the expected rate of quenching the 2 ( )O a  state by 

collisions with electrons is two orders of magnitude smaller then required to explain the 

data.  Also, the quenching rate is invariant as the flow velocity changes, whereas electron 

density changes linearly with gas flow velocity.  Therefore, direct collisions with 2 ( )O a  

and electrons is not responsible for destroying the 2 ( )O a .  The product of electron 

number density and ground state oxygen concentration is constant as a function of the gas 

flow, as determined by the power balance equation.  There are two reactions that are 

dependent on the product of electron number density and the ground state concentration, 

which will limit yield in the correct manner to explain the measured results.  

The two reactions proposed to explain the pressure dependence of the 2 ( )O a  

quenching are dependent on the electron density in different ways.  The three-body 

reaction reported by Rakimova is appropriate if it is assumed that the electron density 
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increases as the pressure of the oxygen is increased.  If the electron density follows the 

trend in average electron energy and decreases with pressure, then the O2(v) quenching 

mechanism proposed in this work is the remaining explanation to the limit in 2 ( )O a  

yield.  This new quenching mechanism may present the community with the new focus in 

which scaling of an EOIL system to powers required for weapons applications is realized.   

This work points to the O2(v) as a possible quenching mechanism of 2 ( )O a .  In 

order to determine the validity of this mechanism, the concentration of O2(v) within the 

gas flow should be verified.  Optical detection of O2(v) is complicated, because the 

energy separation of the excited states does not produce photons that are easily 

distinguishable from thermal emissions.  The primary quenching rate of O2(v) is the wall 

rate, as discussed in Section 4.9.4.3.  Therefore, the term, Γa, should be dependent on 

changes to the surface area of the discharge region.   

In conclusion, a large step was made towards a field-ready system in switching to 

an oxygen-iodine laser.  However, in choosing the chemistry based laser system, a 

logistics issue was introduced.  Using an EOIL on the airframe may be the solution if 

scaling to kW laser powers is realized.  In this work, it is argued that power scaling is a 

complicated endeavor that involves complicated chemical kinetics involving a second 

order quenching of the 2 ( )O a  state used as the energy reservoir for oxygen-iodine laser 

systems.     
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Appendix A 
 
Section A.1 Determination of Laminar Flow 
 

The oxygen gas flow is assumed to be a laminar flow throughout the calculations 

in the document.  This assumption is based on the calculation of the Reynolds number of 

the experimental apparatus.  Reynolds numbers of less then 500 are generally considered 

to be of a laminar type.40  The Reynolds number is defined as: 

  
Re ( )gv Dρ µ=        (A.1) 

 
where ρ is the density of the gas; vg is the velocity of the gas flow; D is the diameter of 

the flow tube; and µ is the dynamic viscosity of the fluid.  The dynamic viscosity of the 

fluid is a function of the gas temperature, Tg, as shown below: 
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 =    +   

      (A.2) 

 
where µ0 is the reference viscosity at the reference temperature T0; Tg is the temperature 

of the gas flow; and C0 is Sutherland’s constant for the gaseous material in question.  

 For the specific case of oxygen flowing in a 1 cm diameter flow tube, with a gas 

temperature of 1,000 K (as used in this study), the value of the Reynolds number is:  

Re = 0.0082         (A.3) 
 

where the density of oxygen, ρ, is 0.3899 kg/m3,40 and velocity is 100 m/s.  The value of 

the dynamic viscosity is calculated using values of:  reference viscosity, µ0, is 

20.18 N s / m2;40 reference temperature, T0, is 292.25 K; Sutherland’s constant, C0, is 127 

K40; and the gas temperature, Tg, is 1,000 K.  This yields a value for the dynamic 
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viscosity of 47.5 N s / m2.  The value of the Reynolds number is well below 500, where a 

gas flow transitions from a laminar.  Therefore, it is a good assumption that this flow is 

laminar. 

 
Section A.2 Thermodynamic Evaluation of the System 

 

The derivation of the energy equation shown in Section 2.5 will be discussed in 

this section.  The expression will be derived from the first and second laws of 

thermodynamics.  The form of the solution is similar to the energy balance equations 

found in Stafford and Kushner,7 Rakimova,17 and Kays and Crawford.40 

Starting with the first law of thermodynamics, assuming that work performed by 

the system is dW, defined as PdV: 

PdVdEdQ +=        (A.4) 
 
where Q is the heat added to the system; E is the total energy of the system; P is the 

pressure in the system; and V is the volume of the system.  This law states that the heat 

either removed from or deposited into the system must go to mechanical work, expanding 

the volume of a container, or be deposited in the internal energy of the system.  The work 

done by the expansion of the gas is obtained by assuming that the change in the volume 

may be calculated using the equation:  

V = A z        (A.5) 

where the change in the value of z is determined by the change in the velocity of the gas 

flow, and, therefore, the expression is: 

z = t0 vg        (A.6) 
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where A = πr2 is the area of the flow tube; t0 is the time it takes the gas to travel an 

arbitrary distance (in this case, the length of the discharge assuming constant flow 

velocity of 100 m/s); and vg is the velocity of the gas.  Combining equations A.5 and A.6 

with the ideal gas law and mass conservation law, the change in energy and work is 

calculated, as the temperature changes from 300 to 1,200 K.  The volume change, dV, is 

2.4 x 10-6 m3, and the pressure is equal to 533 N/m2 at 4 Torr, which results in a change 

of 1.2 x 10-3 J or 1.5% of the total power.  For the remainder of the calculation, this small 

amount of power loss will be ignored.   

So, the first law of thermodynamics is reduced to the expression: 

dQ dE= .        (A.7) 

If it is assumed that the volume is filled with pure oxygen, then the total energy of the gas 

flow takes the form of either kinetic energy of the gas or into the internal energy of the 

oxygen molecule.  Therefore, the first law may be written as: 

( )21

2
p gdQ dE N C dT m dv 

= = + 
 

     (A.8) 

 
If the gas within the discharge is assumed to be of uniform temperature, then a 

simple convective heat transfer coefficient is defined as: 

  0 0( )T gq h T T′′ = − −        (A.9) 
 
where 0q′′  is the heat flux in (J s-1 m-2); hT  is the heat transfer coefficient in joules per 

second per meter squared per Kelvin; T0 is the temperature of the wall; and Tg is the 

temperature of the gas.  The wall of the gas flow tube maintains a temperature just above 

room temperature of approximately 400 K.  The energy lost from the gas to the flow tube 
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wall occurs over the surface area of the discharge, S.  This is also known as Newton’s 

Law of Cooling.  The incremental change in the internal energy of the gas, dE, is:  

0( )in T gdE dU fP Sh T T= = − −      (A.10) 

where f Pin is the fractional power coupled into heat.  From Equation A.7, the incremental 

change in the energy of the system must equal a change in the total heat of the system, 

dQ, and the following relationship may be written: 

 

( )2
0

1
( )

2
p g in T gN C dT m dv fP Sh T T 

+ = − − 
 

   (A.11) 

 

This relationship shows that a fraction of the power coupled into the gas which is 

thermally conducted to the walls of the flow tube.  The remaining energy is coupled into 

the excited molecular states of oxygen, as well as an overall change in the flow velocity 

of the gas. 

The mass of molecular oxygen is 32 amu.  The change in the gas velocity due to 

measured changes in the gas temperature is determined to be 10 meters per second or 

less.  Using this result for the change in velocity, the kinetic energy associated with 

velocity of the gas is:   

( )21
0.03

2
N m dv J≈        (A.12) 

 
Therefore, the contribution of change in kinetic energy to the internal energy of the 

system will be ignored, and Equation A.11 becomes: 

 
0( )p g in T gNC dT fP Sh T T= − −      (A.13) 
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This is the form of the energy conservation equation, which is used in Section 2.5. 
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Appendix B 
 
 

The theoretical treatment of the plasma within this study dictates that the power 

coupled from the electric field into the plasma is divided among elastic and inelastic 

collisions of the electrons with ground state oxygen.  After steady-state is achieved within 

the discharge, taking about 1 ms, 17% of the power has been coupled into heating the gas 

in the discharge; 4% has been coupled into the ionization of the gas; 17.4% has been 

coupled into excited species of oxygen; and the remainder has been lost to the walls and 

dissipated by forced convective cooling into the surrounding air.  Determination of these 

percentages follows. 

The percentage of power coupled into excited species is determined by the 

concentrations calculated from the measured concentrations of O-atoms, using 

actinometry, and 2 ( )O a , by scaling to the Rakimova data, and in combination with the 

simulated results presented in this work.   

The amount of power convectively removed from the discharge region, PM, is 

calculated as:  

[ ]MP Av E M= ∆        (B.1) 

where A is the cross-sectional area of the flow tube; v  is the velocity of the flowing gas; 

∆E is the energy used to form the excited state; and [M] is the concentration of the 

excited species, M, at steady-state, in the gas flow.   

Nominal values for the excited species are taken from Table 5.2:  Oxygen atoms 

5% = 16 31.3 10 cm−× , 2 ( )O a  2% = 15 31.6 10 cm−× .  The energy required to form the 
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excited state, 2 ( )O a , is 1 eV.  Atomic oxygen is primarily produced within the discharge 

via two pathways (reactions 13 and 14): 

3 3
2

3 1
2

( ) ( ) ( )

( ) ( ) ( )

OP

OD

k

k

e O X O P O P e

e O X O P O D e

+

+

− −

− −

+ → + +

+ → + +
       (B.2)  

Reaction 13 results in the production of two oxygen atoms in the ground state and 

requires 6 eV.  The result of Reaction 14 is one O-atom in the ground state and one O-

atom in the 1D excited state which requires 8.4 eV.  At the electron temperature in which 

this study occurs (approximately 3 eV), the reaction rate coefficients of these two 

reaction pathways are about the same.  Therefore, the energy required to generate a pair 

of oxygen atoms from an oxygen molecule in the ground state is an average of these two 

energy pathways and is equal to 7.2 eV.  For energy conservation to hold when two 

oxygen atoms recombine at the wall of the flow tube, forming a ground state oxygen 

molecule, the energy deposited to the wall will be 7.2 eV.  Also, the amount of energy 

carried out of the discharge region by atomic oxygen is also 7.2 eV per pair. 

 Using Equation B.1 and the transitional energies previously discussed, the amount 

of energy removed from the discharge by energetic species in the gas flow will be 

approximated.  If v  = 2,000 cm/s, ( )2 20.5 0.78 A r cmπ π= = = , and 32.4 Vol cm= , 

then the convective power loss by atomic oxygen is:  

[ ] [ ]2 16 30.78 2,000 / 1.3 10  3.6 

12 WO

Av E O cm cm s cm eV

P

−   ∆ = ×   
=

  (B.3) 

and by 2 ( )O a is approximately: 
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( ) [ ]2 15 3
2

2

0.78 2,000 / 1.6 10  1.0 

1 WO a

Av E O a cm cm s cm eV

P

−   ∆ = ×      
=

 (B.4) 

 Energy is also deposited collisionally at the walls by excited species. The majority 

of the energy deposited at the wall by excited species is carried by atomic oxygen.  The 

thermal transfer due to O-atoms recombining at the surface of the wall may be 

determined using the wall rate in reaction 19 and the approximation of the concentration 

of O-atoms.  Therefore, using the wall rate, the power transferred to the flow tube walls 

by this reaction may be calculated as: 

[ ] 1 16 3 31600 1.3 10  2.4 3.6 

43 W
Wall

OW

k O Vol E s cm cm eV

P

− −     ∆ = ×     
=

  (B.5) 

Where Vol is the volume of the discharge region.  The sum of the power being swept out 

of the discharge region in the form of the excited species, being collisionally deposited by 

O-atoms at the walls, and the 17% via heat transfers, accounts for 70 W.  85 W are being 

coupled into the discharge from the electric field.  Therefore, all of the power is not 

accounted for.  However, all of the concentrations within this study are measured by 

methods that include at least a 20% error.  By adding 20% to the concentrations of 2 ( )O a  

and O-atoms, the dissipated power becomes 73 W.  Furthermore, there are many excited 

species not accounted for in this power analysis, including the O2(A) state created by 

reaction 12 and the vibrationally excited species; so, it is not surprising that the totality of 

the deposited power is not accounted for.   
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